Artículo
Heterogeneity across neural populations: Its significance for the dynamics and functions of neural circuits
Fecha de publicación:
04/2021
Editorial:
American Physical Society
Revista:
Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN:
2470-0045
e-ISSN:
2470-0053
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Neural populations show patterns of synchronous activity, as they share common correlated inputs. Neurons in the cortex that are connected by strong synapses cause rapid firing explosions. In addition, areas that are connected by weaker synapses have a slower dynamics and they can contribute to asymmetries in the input distributions. The aim of this work is to develop a neural model to investigate how the heterogeneities in the synaptic input distributions affect different levels of organizational activity in the brain dynamics. We analytically show how small changes in the correlation inputs can cause large changes in the interactions of the outputs that lead to a phase transition, demonstrating that a simple variation in the direction of a biased skewed distribution in the neuronal inputs can generate a transition of states in the firing rate, passing from spontaneous silence ("down state") to an absolute spiking activity ("up state"). We present an exact quantification of the dynamics of the output variables, showing that when considering a biased skewed distribution in the inputs of neuronal population, the critical point is not in an asynchronous or synchronous state but rather at an intermediate value.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Baravalle, Román; Montani, Fernando Fabián; Heterogeneity across neural populations: Its significance for the dynamics and functions of neural circuits; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 103; 4; 4-2021; 1-12
Compartir
Altmétricas