Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Exploring neural network training strategies to determine phase transitions in frustrated magnetic models

Corte, Inés RaquelIcon ; Acevedo, Santiago DanielIcon ; Arlego, Marcelo José FabiánIcon ; Lamas, Carlos AlbertoIcon
Fecha de publicación: 08/2021
Editorial: Elsevier Science
Revista: Computational Materials Science
ISSN: 0927-0256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

The transfer learning of a neural network is one of its most outstanding aspects and has given supervised learning with neural networks a prominent place in data science. Here we explore this feature in the context of strongly interacting many-body systems. Through case studies, we test the potential of this deep learning technique to detect phases and their transitions in frustrated spin systems, using fully-connected and convolutional neural networks. In addition, we explore a recently-introduced technique, which is at the middle point of supervised and unsupervised learning. It consists in evaluating the performance of a neural network that has been deliberately “confused” during its training. To properly demonstrate the capability of the “confusion” and transfer learning techniques, we apply them to a paradigmatic model of frustrated magnetism in two dimensions, to determine its phase diagram and compare it with high-performance Monte Carlo simulations.
Palabras clave: FRUSTRATED MAGNETISM , HONEYCOMB LATTICE , ISING MODEL , MACHINE LEARNING , NEURAL NETWORKS , SQUARE LATTICE
Ver el registro completo
 
Archivos asociados
Tamaño: 1.244Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/181162
DOI: http://dx.doi.org/10.1016/j.commatsci.2021.110702
URL: https://www.sciencedirect.com/science/article/abs/pii/S0927025621004298
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Corte, Inés Raquel; Acevedo, Santiago Daniel; Arlego, Marcelo José Fabián; Lamas, Carlos Alberto; Exploring neural network training strategies to determine phase transitions in frustrated magnetic models; Elsevier Science; Computational Materials Science; 198; 110702; 8-2021; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES