Artículo
Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning
Fecha de publicación:
04/2021
Editorial:
American Physical Society
Revista:
Physical Review B
ISSN:
2469-9950
e-ISSN:
2469-9969
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We apply unsupervised learning techniques to classify the different phases of the J1-J2 antiferromagnetic Ising model on the honeycomb lattice. We construct the phase diagram of the system using convolutional autoencoders. These neural networks can detect phase transitions in the system via "anomaly detection"without the need for any label or a priori knowledge of the phases. We present different ways of training these autoencoders, and we evaluate them to discriminate between distinct magnetic phases. In this process, we highlight the case of high-temperature or even random training data. Finally, we analyze the capability of the autoencoder to detect the ground state degeneracy through the reconstruction error.
Palabras clave:
machine learning
,
frustrated magnetism
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Acevedo, Santiago Daniel; Arlego, Marcelo José Fabián; Lamas, Carlos Alberto; Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning; American Physical Society; Physical Review B; 103; 13; 4-2021; 1-11
Compartir
Altmétricas