Mostrar el registro sencillo del ítem
dc.contributor.author
Nobre, F. D.
dc.contributor.author
Plastino, Angel Ricardo

dc.date.available
2017-06-13T17:39:55Z
dc.date.issued
2016-06
dc.identifier.citation
Nobre, F. D.; Plastino, Angel Ricardo; Generalized nonlinear Proca equation and its free-particle solutions; Springer; European Physical Journal C: Particles and Fields; 76; 6; 6-2016
dc.identifier.issn
1434-6044
dc.identifier.uri
http://hdl.handle.net/11336/18100
dc.description.abstract
We introduce a nonlinear extension of Proca?s field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein?Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q→ 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ μ(x→ , t) , involves an additional field Φ μ(x→ , t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2= p2c2+ m2c4for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Nonlinear Wave Equations
dc.subject
Proca Equation
dc.subject
Soliton-Like Solutions
dc.subject.classification
Otras Ciencias Físicas

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Generalized nonlinear Proca equation and its free-particle solutions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-12T20:03:47Z
dc.journal.volume
76
dc.journal.number
6
dc.journal.pais
Alemania

dc.description.fil
Fil: Nobre, F. D.. Centro Brasileiro de Pesquisas Fisicas; Brasil
dc.description.fil
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
dc.journal.title
European Physical Journal C: Particles and Fields

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1140/epjc/s10052-016-4196-4
Archivos asociados