Mostrar el registro sencillo del ítem
dc.contributor.author
Pastor, Manuel
dc.contributor.author
Tayyebi, Saeid M.
dc.contributor.author
Stickle, Miguel M.
dc.contributor.author
Yagüe, Ángel
dc.contributor.author
Molinos, Miguel
dc.contributor.author
Navas, Pedro
dc.contributor.author
Manzanal, Diego
dc.date.available
2022-12-13T10:53:59Z
dc.date.issued
2021-08
dc.identifier.citation
Pastor, Manuel; Tayyebi, Saeid M.; Stickle, Miguel M.; Yagüe, Ángel; Molinos, Miguel; et al.; A depth integrated, coupled, two-phase model for debris flow propagation; Springer; Acta Geotechnica; 16; 8; 8-2021; 2409-2433
dc.identifier.issn
1861-1125
dc.identifier.uri
http://hdl.handle.net/11336/180925
dc.description.abstract
Debris flows are a type of fast landslides where a mixture of soil and water propagates along narrow channels. The main characteristics are (1) important relative displacements between the solid and fluid phases, and (2) development of pore-water pressures in excess to hydrostatic. The ratios between vertical and horizontal displacements of the flow, from the triggering point to the deposition, indicate that friction angles are much smaller than those measured in laboratories. Debris flows are modeled as two phases flow, but implementing pore-water pressure is an important issue. The purpose of this paper is to improve the existing two phases debris flow models by implementing pore-water pressures in excess to hydrostatic. It is found that pore pressure evolution depends on consolidation, changes in the flow depth, and changes and gradients of porosity. The proposed depth integrated mathematical model is discretized using two sets of SPH nodes (solid and fluid), with a set of finite difference meshes associated with each solid material SPH point. The paper presents two examples from where it is possible to gain insight into the differences between the models (with and without excess pore water pressure).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEBRIS FLOW
dc.subject
DEPTH INTEGRATED MODEL
dc.subject
SPH
dc.subject
TWO-PHASE MODEL
dc.subject.classification
Otras Ingeniería Civil
dc.subject.classification
Ingeniería Civil
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A depth integrated, coupled, two-phase model for debris flow propagation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-21T23:57:00Z
dc.identifier.eissn
1861-1133
dc.journal.volume
16
dc.journal.number
8
dc.journal.pagination
2409-2433
dc.journal.pais
Alemania
dc.description.fil
Fil: Pastor, Manuel. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Tayyebi, Saeid M.. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Stickle, Miguel M.. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Yagüe, Ángel. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Molinos, Miguel. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Navas, Pedro. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Manzanal, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
dc.journal.title
Acta Geotechnica
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11440-020-01114-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11440-020-01114-4
Archivos asociados