Mostrar el registro sencillo del ítem

dc.contributor.author
Pastor, Manuel  
dc.contributor.author
Tayyebi, Saeid M.  
dc.contributor.author
Stickle, Miguel M.  
dc.contributor.author
Yagüe, Ángel  
dc.contributor.author
Molinos, Miguel  
dc.contributor.author
Navas, Pedro  
dc.contributor.author
Manzanal, Diego  
dc.date.available
2022-12-13T10:53:59Z  
dc.date.issued
2021-08  
dc.identifier.citation
Pastor, Manuel; Tayyebi, Saeid M.; Stickle, Miguel M.; Yagüe, Ángel; Molinos, Miguel; et al.; A depth integrated, coupled, two-phase model for debris flow propagation; Springer; Acta Geotechnica; 16; 8; 8-2021; 2409-2433  
dc.identifier.issn
1861-1125  
dc.identifier.uri
http://hdl.handle.net/11336/180925  
dc.description.abstract
Debris flows are a type of fast landslides where a mixture of soil and water propagates along narrow channels. The main characteristics are (1) important relative displacements between the solid and fluid phases, and (2) development of pore-water pressures in excess to hydrostatic. The ratios between vertical and horizontal displacements of the flow, from the triggering point to the deposition, indicate that friction angles are much smaller than those measured in laboratories. Debris flows are modeled as two phases flow, but implementing pore-water pressure is an important issue. The purpose of this paper is to improve the existing two phases debris flow models by implementing pore-water pressures in excess to hydrostatic. It is found that pore pressure evolution depends on consolidation, changes in the flow depth, and changes and gradients of porosity. The proposed depth integrated mathematical model is discretized using two sets of SPH nodes (solid and fluid), with a set of finite difference meshes associated with each solid material SPH point. The paper presents two examples from where it is possible to gain insight into the differences between the models (with and without excess pore water pressure).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEBRIS FLOW  
dc.subject
DEPTH INTEGRATED MODEL  
dc.subject
SPH  
dc.subject
TWO-PHASE MODEL  
dc.subject.classification
Otras Ingeniería Civil  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A depth integrated, coupled, two-phase model for debris flow propagation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-21T23:57:00Z  
dc.identifier.eissn
1861-1133  
dc.journal.volume
16  
dc.journal.number
8  
dc.journal.pagination
2409-2433  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Pastor, Manuel. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Tayyebi, Saeid M.. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Stickle, Miguel M.. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Yagüe, Ángel. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Molinos, Miguel. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Navas, Pedro. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Manzanal, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina  
dc.journal.title
Acta Geotechnica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11440-020-01114-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11440-020-01114-4