Mostrar el registro sencillo del ítem

dc.contributor.author
Marín, Patricia  
dc.contributor.author
Martirani Von Abercron, Sophie Marie  
dc.contributor.author
Urbina, Leire  
dc.contributor.author
Pacheco Sánchez, Daniel  
dc.contributor.author
Castañeda Cataña, Mayra Alejandra  
dc.contributor.author
Retegi, Aloña  
dc.contributor.author
Eceiza, Arantxa  
dc.contributor.author
Marqués, Silvia  
dc.date.available
2022-12-12T16:00:37Z  
dc.date.issued
2019-07  
dc.identifier.citation
Marín, Patricia; Martirani Von Abercron, Sophie Marie; Urbina, Leire; Pacheco Sánchez, Daniel; Castañeda Cataña, Mayra Alejandra; et al.; Bacterial nanocellulose production from naphthalene; John Wiley & Sons Ltd; Microbial Biotechnology; 12; 4; 7-2019; 662-676  
dc.identifier.issn
1751-7907  
dc.identifier.uri
http://hdl.handle.net/11336/180809  
dc.description.abstract
Polycyclic aromatic compounds (PAHs) are toxic compounds that are released in the environment as a consequence of industrial activities. The restoration of PAH-polluted sites considers the use of bacteria capable of degrading aromatic compounds to carbon dioxide and water. Here we characterize a new Xanthobacteraceae strain, Starkeya sp. strain N1B, previously isolated during enrichment under microaerophilic conditions, which is capable of using naphthalene crystals as the sole carbon source. The strain produced a structured biofilm when grown on naphthalene crystals, which had the shape of a half-sphere organized over the crystal. Scanning electron microscopy (SEM) and GC-MS analysis indicated that the biofilm was essentially made of cellulose, composed of several micron-long nanofibrils of 60 nm diameter. A cellulosic biofilm was also formed when the cells grew with glucose as the carbon source. Fourier transformed infrared spectroscopy (FTIR) confirmed that the polymer was type I cellulose in both cases, although the crystallinity of the material greatly depended on the carbon source used for growth. Using genome mining and mutant analysis, we identified the genetic complements required for the transformation of naphthalene into cellulose, which seemed to have been successively acquired through horizontal gene transfer. The capacity to develop the biofilm around the crystal was found to be dispensable for growth when naphthalene was used as the carbon source, suggesting that the function of this structure is more intricate than initially thought. This is the first example of the use of toxic aromatic hydrocarbons as the carbon source for bacterial cellulose production. Application of this capacity would allow the remediation of a PAH into such a value-added polymer with multiple biotechnological usages.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Xanthobacteraceae strain  
dc.subject
Polycyclic aromatic compounds (PAHs)  
dc.subject
cellulose  
dc.subject
Starkeya sp  
dc.subject.classification
Biotecnología Medioambiental  
dc.subject.classification
Biotecnología del Medio Ambiente  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Bacterial nanocellulose production from naphthalene  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-12-05T17:55:08Z  
dc.identifier.eissn
1751-7915  
dc.journal.volume
12  
dc.journal.number
4  
dc.journal.pagination
662-676  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New Jersey  
dc.description.fil
Fil: Marín, Patricia. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España  
dc.description.fil
Fil: Martirani Von Abercron, Sophie Marie. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España  
dc.description.fil
Fil: Urbina, Leire. Universidad del País Vasco; España  
dc.description.fil
Fil: Pacheco Sánchez, Daniel. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España  
dc.description.fil
Fil: Castañeda Cataña, Mayra Alejandra. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Retegi, Aloña. Universidad del País Vasco; España  
dc.description.fil
Fil: Eceiza, Arantxa. Universidad del País Vasco; España  
dc.description.fil
Fil: Marqués, Silvia. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España  
dc.journal.title
Microbial Biotechnology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://sfamjournals.onlinelibrary.wiley.com/doi/full/10.1111/1751-7915.13399  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/1751-7915.13399