Mostrar el registro sencillo del ítem

dc.contributor.author
Ruscica, Romina  
dc.contributor.author
Polcher, Jan  
dc.contributor.author
Salvia, Maria Mercedes  
dc.contributor.author
Sörensson, Anna  
dc.contributor.author
Piles, Maria  
dc.contributor.author
Jobbágy, Esteban G.  
dc.contributor.author
Karszenbaum, Haydee  
dc.date.available
2022-12-12T15:59:37Z  
dc.date.issued
2020-08  
dc.identifier.citation
Ruscica, Romina; Polcher, Jan; Salvia, Maria Mercedes; Sörensson, Anna; Piles, Maria; et al.; Spatio-temporal soil drying in southeastern South America: the importance of effective sampling frequency and observational errors on drydown time scale estimates; Taylor & Francis Ltd; International Journal of Remote Sensing; 41; 20; 8-2020; 7958-7992  
dc.identifier.issn
0143-1161  
dc.identifier.uri
http://hdl.handle.net/11336/180808  
dc.description.abstract
The study of the spatio-temporal dynamics of surface soil moisture (SSM) drydowns integrates the soil response to climatic conditions, drainage and land cover and is key to advances in our knowledge of the soil–atmosphere water exchange. SSM drydowns have also been employed to compare soil moisture spatio-temporal behaviour between different data sources such as satellite-derived data and land–surface models, difficult to compare with standard methodologies. However, the errors introduced by satellite effective sampling frequencies (SF) and by different methodologies employed to define a drydown period have until now not been properly addressed in the literature. Here, SSM from microwave remote sensing products operating at L, C and X frequency bands are analysed together with SSM from a land–surface model in southeastern South America during 2010–2014, at seasonal and annual scales. We use an SSM-based drydown detection methodology and an exponential model to estimate the drydown time scale. The errors generated by the SF and by using SSM instead of precipitation to define the start of the drydown period are examined using a synthetic soil moisture model. Most of the products can detect the negative correlation between aridity conditions and drydown time scales (faster soil drying in the semiarid west and slower–and noisier–towards the wetter east). The Soil Moisture Ocean Salinity (SMOS) L-band product reproduces the smoothest drydown time scale spatial patterns at the annual and seasonal scales and displays large seasonal contrasts, although its error due to SF is the highest among the three products. The Organizing Carbon Hydrology In Dynamic Ecosystems (ORCHIDEE) land–surface model resampled by the SF of each product shows better agreement with SMOS, followed by the X-band product. The agreement is higher over the southern Pampas Plains, a region with high coverage of satellite-derived data and flat topography. SSM observational errors generate higher relative uncertainties for drydown time scales longer than 8 days, while the SF is more relevant for shorter drydowns. Also, the SF has a larger impact than soil depth, particularly in the dry season, when sparse temporal coverage misses short drydowns. Soil texture influence is captured by SMOS and ORCHIDEE, revealing slower drydowns for finer textures at the annual scale. Our results show that the soil drying behaviour is comparable between microwave remote sensing products and a land–surface model and that the observational errors and the SF are important sources of uncertainty to consider when interpreting drydown results.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SURFACE SOIL MOISTURE  
dc.subject
DRYDOWN TIMESCALE  
dc.subject
MICROWAVE REMOTE SENSING PRODUCTS  
dc.subject
LAND SURFACE MODEL  
dc.subject
EFFECTIVE SAMPLING FREQUENCY  
dc.subject
SOUTHEASTERN SOUTHAMERICA  
dc.subject.classification
Oceanografía, Hidrología, Recursos Hídricos  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spatio-temporal soil drying in southeastern South America: the importance of effective sampling frequency and observational errors on drydown time scale estimates  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-27T20:52:46Z  
dc.journal.volume
41  
dc.journal.number
20  
dc.journal.pagination
7958-7992  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Ruscica, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina  
dc.description.fil
Fil: Polcher, Jan. École Polytechnique; Francia  
dc.description.fil
Fil: Salvia, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.description.fil
Fil: Sörensson, Anna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina  
dc.description.fil
Fil: Piles, Maria. Universidad de Valencia; España  
dc.description.fil
Fil: Jobbágy, Esteban G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina  
dc.description.fil
Fil: Karszenbaum, Haydee. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.journal.title
International Journal of Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01431161.2020.1767825  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01431161.2020.1767825