Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Analysis of electrode shift effects on wavelet features embedded in a myoelectric pattern recognition system

Fontana, Juan ManuelIcon ; Chiu, Alan W. L.
Fecha de publicación: 08/2013
Editorial: Taylor & Francis
Revista: Assistive Technology
ISSN: 1040-0435
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

Myoelectric pattern recognition systems can translate muscle contractions into prosthesis commands; however, the lack of long-term robustness of such systems has resulted in low acceptability. Specifically, socket misalignment may cause disturbances related to electrodes shifting from their original recording location, which affects the myoelectric signals (MES) and produce degradation of the classification performance. In this work, the impact of such disturbances on wavelet features extracted from MES was evaluated in terms of classification accuracy. Additionally, two principal component analysis frameworks were studied to reduce the wavelet feature set. MES from seven able-body subjects and one subject with congenital transradial limb loss were studied. The electrode shifts were artificially introduced by recording signals during six sessions for each subject. A small drop in classification accuracy from 93.8% (no disturbances) to 88.3% (with disturbances) indicated that wavelet features were able to adapt to the variability introduced by electrode shift disturbances. The classification performance of the reduced feature set was significantly lower than the performance of the full wavelet feature set. The results observed in this study suggest that the effect of electrode shift disturbances on the MES can potentially be mitigated by using wavelet features embedded in a pattern recognition system.
Palabras clave: ELECTRODE SHIFTS , FEATURE EXTRACTION , MYOELECTRIC CONTROL , PRINCIPAL COMPONENT ANALYSIS , SUPPORT VECTOR MACHINES , WAVELET DECOMPOSITION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.619Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/180716
URL: http://www.tandfonline.com/doi/abs/10.1080/10400435.2013.827138
DOI: https://doi.org/10.1080/10400435.2013.827138
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Fontana, Juan Manuel; Chiu, Alan W. L.; Analysis of electrode shift effects on wavelet features embedded in a myoelectric pattern recognition system; Taylor & Francis; Assistive Technology; 26; 2; 8-2013; 71-80
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES