Mostrar el registro sencillo del ítem

dc.contributor.author
Arrachea, Liliana del Carmen  
dc.contributor.author
Bode, Niels  
dc.contributor.author
Oppen, Felix von  
dc.date.available
2017-06-12T21:54:08Z  
dc.date.issued
2014-09  
dc.identifier.citation
Arrachea, Liliana del Carmen; Bode, Niels; Oppen, Felix von; Vibrational cooling and thermoelectric response of nanoelectromechanical systems; American Physical Society; Physical Review B: Condensed Matter And Materials Physics; 90; 12; 9-2014; 1-12; 125450  
dc.identifier.issn
1098-0121  
dc.identifier.uri
http://hdl.handle.net/11336/18069  
dc.description.abstract
An important goal in nanoelectromechanics is to cool the vibrational motion, ideally to its quantum ground state. Cooling by an applied charge current is a particularly simple and hence attractive strategy to this effect. Here we explore this phenomenon in the context of the general theory of thermoelectrics. In linear response, this theory describes thermoelectric refrigerators in terms of their cooling efficiency η and figure of merit ZT . We show that both concepts carry over to phonon cooling in nanoelectromechanical systems. As an important consequence, this allows us to discuss the efficiency of phonon refrigerators in relation to the fundamental Carnot efficiency. We illustrate these general concepts by thoroughly investigating a simple double-quantum-dot model with the dual advantage of being quite realistic experimentally and amenable to a largely analytical analysis theoretically. Specifically, we obtain results for the efficiency, the figure of merit, and the effective temperature of the vibrational motion in two regimes. In the quantum regime in which the vibrational motion is fast compared to the electronic degrees of freedom, we can describe the electronic and phononic dynamics of the model in terms of master equations. In the complementary classical regime of slow vibrational motion, the dynamics is described in terms of an appropriate Langevin equation. Remarkably, we find that the efficiency can approach the maximal Carnot value in the quantum regime, with large associated figures of merit. In contrast, the efficiencies are typically far from the Carnot limit in the classical regime. Our theoretical results should provide guidance to implementing efficient vibrational cooling of nanoelectromechanical systems in the laboratory.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cooling  
dc.subject
Quantum  
dc.subject
Thermoelectrics  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Vibrational cooling and thermoelectric response of nanoelectromechanical systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-12T18:04:39Z  
dc.journal.volume
90  
dc.journal.number
12  
dc.journal.pagination
1-12; 125450  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
College Park  
dc.description.fil
Fil: Arrachea, Liliana del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Bode, Niels. Freie Universitat Berlin; Alemania  
dc.description.fil
Fil: Oppen, Felix von. Freie Universitat Berlin; Alemania  
dc.journal.title
Physical Review B: Condensed Matter And Materials Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevB.90.125450  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.125450  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1407.3127