Mostrar el registro sencillo del ítem

dc.contributor.author
Maggiori, Emmanuel  
dc.contributor.author
Manterola, Hugo Luis  
dc.contributor.author
del Fresno, Mirta Mariana  
dc.date.available
2022-12-07T19:03:18Z  
dc.date.issued
2015-04  
dc.identifier.citation
Maggiori, Emmanuel; Manterola, Hugo Luis; del Fresno, Mirta Mariana; Perceptual grouping by tensor voting: a comparative survey of recent approaches; Institution of Engineering and Technology; Iet Computer Vision; 9; 2; 4-2015; 259-277  
dc.identifier.issn
1751-9632  
dc.identifier.uri
http://hdl.handle.net/11336/180620  
dc.description.abstract
Tensor voting is a computational framework that addresses the problem of perceptual organisation. It was designed to convey human perception principles into a unified framework that can be adapted to extract visually salient elements from possibly noisy or corrupted images. The original formulation featured some concerns that made it difficult or impractical to be applied directly. Therefore, several partial or total theoretical reformulations or augmentations have been proposed. These almost parallel publication were presented in different directions, with different priorities and even in a different notation. Thus, the authors observed the need for a coherent description and comparison of the different proposals. This work, after describing the original approach of tensor voting, reviews and explains a number of high impact theoretical modifications in a self-contained manner and including possible future directions of work. The authors have selected and organised a number of formulations and unified the way the problem is addressed across the different proposals. The aim of this study is to contribute with a modern comprehensive source of information on the theoretical aspects of tensor voting.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institution of Engineering and Technology  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COMPUTER VISION  
dc.subject
PERCEPTUAL GROUPING  
dc.subject
TENSOR VOTING  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Perceptual grouping by tensor voting: a comparative survey of recent approaches  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-12-05T11:02:14Z  
dc.journal.volume
9  
dc.journal.number
2  
dc.journal.pagination
259-277  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Maggiori, Emmanuel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Centre Inria Sophia Antipolis; Francia  
dc.description.fil
Fil: Manterola, Hugo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: del Fresno, Mirta Mariana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.journal.title
Iet Computer Vision  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-cvi.2014.0103  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1049/iet-cvi.2014.0103