Mostrar el registro sencillo del ítem

dc.contributor.author
Quinteiro, Guillermo Federico  
dc.contributor.author
Kuhn, Tilmann  
dc.date.available
2017-06-12T20:44:11Z  
dc.date.issued
2014-09  
dc.identifier.citation
Quinteiro, Guillermo Federico; Kuhn, Tilmann; Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams; American Physical Society; Physical Review B: Condensed Matter And Materials Physics; 90; 11; 9-2014; 1-9; 115401  
dc.identifier.issn
1098-0121  
dc.identifier.uri
http://hdl.handle.net/11336/18032  
dc.description.abstract
An optical vortex is an inhomogeneous light beam having a phase singularity at its axis, where the intensity of the electric and/or magnetic field may vanish. Already well studied are the paraxial beams, which may carry well-defined values of spin (polarization σ) and orbital angular momenta; the orbital angular momentum per photon is given by the topological charge times the Planck constant. Here we study the light hole–to–conduction band transitions in a semiconductor quantum dot induced by a highly focused beam originating from a = 1 paraxial optical vortex. We find that at normal incidence the pulse will produce two distinct types of electron-hole pairs, depending on the relative signs of σ and . When sgn(σ) = sgn(), the pulse will create electron-hole pairs with band+spin and envelope angular momenta both equal to 1. In contrast, for sgn(σ) = sgn(), the electron-hole pairs will have neither band+spin nor envelope angular momenta. A tightly focused optical-vortex beam thus makes possible the creation of pairs that cannot be produced with plane waves at normal incidence. With the addition of co-propagating plane waves or switching techniques to change the charge both the band+spin and the envelope angular momenta of the pair wave function can be precisely controlled. We discuss possible applications in the field of spintronics that open up.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Optical Vortex  
dc.subject
Twisted Light  
dc.subject
Quantum Dot  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Light-hole transitions in quantum dots: Realizing full control by highly focused optical-vortex beams  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-12T18:04:57Z  
dc.journal.volume
90  
dc.journal.number
11  
dc.journal.pagination
1-9; 115401  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
College Park  
dc.description.fil
Fil: Quinteiro, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universität Münster; Alemania  
dc.description.fil
Fil: Kuhn, Tilmann. Universität Münster; Alemania  
dc.journal.title
Physical Review B: Condensed Matter And Materials Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevB.90.115401  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.115401  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.7229