Mostrar el registro sencillo del ítem

dc.contributor.author
Romero, Cintia Mariana  
dc.contributor.author
Lucca, Maria Ester  
dc.contributor.author
Perotti, Nora Ines  
dc.contributor.author
Siñeriz, Faustino  
dc.contributor.author
Martinez, Maria Alejandra  
dc.date.available
2022-12-06T11:25:05Z  
dc.date.issued
2019  
dc.identifier.citation
Biocatalysts. Hydrolases Production; 12th International Conference Biocatalysis-2019: fundamentals & applications; Rusia; 2019; 1-6  
dc.identifier.isbn
978-5-9651-1245-6  
dc.identifier.uri
http://hdl.handle.net/11336/180297  
dc.description.abstract
The need to reduce waste generation and the use of toxic materials for waste disposal has led to agrowing interest in the development of sustainable bioprocesses using enzymes. Hydrolases can beapplied in different fields such as biofuels, pharmaceutical, detergent, oleochemical, organic synthesis and food industries. Many hydrolases such as, lipases, proteases and glycosyl hydrolases are extracellular, and to make possible its use economically, it is necessary to optimize yields through optimization of culture conditions and/or genetic manipulation to increase the microbial enzyme activities.The objective of this work was to optimize hydrolases production, and the design of bioprocessscale-up. The culture medium to obtain high enzyme activities by different strains belongingto Firmicutes phylum was optimized by means of statistical-based designs, followed by a partialpurification to assess the enzyme preparations properties.A Box Behnken design-based statistical analysis indicated that the variables that most influencedthe lipase and protease production were peptone and sucrose concentration. Increments on lipaseproduction up to 33 U/g at 5 g/L of sucrose were observed, while further increments on the carbonsource concentration reduced the enzyme production. The optimized medium (sucrose, 5g/L; peptone, 7.5 g/L; CaCl2, 0.05 M) produced 35.1 U/mL and 4.60 U/ml for lipase and protease respectively. Both, protease and lipase, were used to enrich refined fish oils in polyunsaturated fatty acids(ω-3 PUFA); as a result, an increment of 1.2-fold of DHA (docosahexaenoic acid) content was obtained.The examination of the culture media components influencing bacterial growth and endoglucanaseproduction demonstrated that mono and disaccharides are useful substrates for enzyme production.Moreover, their combination with carboxymethyl-cellulose (CMC) showed a synergistic effect onenzyme production. Consequently, by using a peptone-based medium amended with sucrose andCMC, a cellulolytic cocktail was efficiently produced in a 1-L stirred tank reactor on batch operation mode, reaching a maximum of 3.12 IU/mL. It is important to point out that the use of simplesugars favors both operative culture conditions and downstream processing.Finally, raw and alkali-pretreated sugarcane bagasse were the carbon sources that better promotedxylanase production. The xylanases obtained were further utilized for: (i) a cocktail formulationsupplementing commercial enzymes that improved the glucose releasement (~38 %) from sugarcane pretreated material for second generation ethanol production. (ii) generation of arabinoxylooligosaccharides, potential prebiotics, from the pretreated sugarcane bagasse and wheat bran.Scaling-up these bioprocesses to evaluate the technical feasibility and the commercial viability isnow being performed in a pilot plant with a 150 L Fermentor. Scale parameters were selected foreach of the enzymes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Innovations and High Technologies  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Biocatalisis  
dc.subject
Hidrolasas  
dc.subject
Enzimas  
dc.subject
Bioproductos  
dc.subject.classification
Bioprocesamiento Tecnológico, Biocatálisis, Fermentación  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Biocatalysts. Hydrolases Production  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-11-04T12:42:48Z  
dc.journal.pagination
1-6  
dc.journal.pais
Rusia  
dc.description.fil
Fil: Romero, Cintia Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina  
dc.description.fil
Fil: Lucca, Maria Ester. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina  
dc.description.fil
Fil: Perotti, Nora Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina  
dc.description.fil
Fil: Siñeriz, Faustino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina  
dc.description.fil
Fil: Martinez, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
12th International Conference Biocatalysis-2019: fundamentals & applications  
dc.date.evento
2019-06-24  
dc.description.paisEvento
Rusia  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Innovations and High Technologies  
dc.source.libro
12th International Conference Biocatalysis-2019: fundamentals & applications  
dc.date.eventoHasta
2019-06-28  
dc.type
Conferencia