Mostrar el registro sencillo del ítem

dc.contributor.author
Zhao, S.  
dc.contributor.author
Kad, B.  
dc.contributor.author
Hahn, E. N.  
dc.contributor.author
Remington, Bruce A.  
dc.contributor.author
Wehrenberg, C. E.  
dc.contributor.author
Huntington, C. M.  
dc.contributor.author
Park, H. S.  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.contributor.author
More, K. L.  
dc.contributor.author
Meyers, Marc A.  
dc.date.available
2022-12-05T17:46:45Z  
dc.date.issued
2015-12  
dc.identifier.citation
Zhao, S.; Kad, B.; Hahn, E. N.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Pressure and shear-induced amorphization of silicon; Elsevier; Extreme Mechanics Letters; 5; 12-2015; 74-80  
dc.identifier.issn
2352-4316  
dc.identifier.uri
http://hdl.handle.net/11336/180234  
dc.description.abstract
Here we report that high-power, pulsed, laser-driven shock compression of monocrystalline silicon produces directional amorphization, revealed by high-resolution transmission electron microscopy and confirmed by molecular dynamics simulations. At the lowest energy level experiment, generating a pressure of ~4 GPa, silicon reacts elastically. At intermediate energy levels (P~11 and 22 GPa), amorphization is observed both at the surface and directionally, along planes making angles close to the maximum shear. At the highest laser energy level explored here, (Ppeak ~28 GPa), the recovered sample shows a nanocrystalline microstructure near the surface. This nanocrystalline structure forms by crystallization from the amorphous phase and is thought to be a post-shock phenomenon. Shear-induced lattice defects (stacking faults and twins) on crystallographic slip planes play a crucial role in the onset of amorphization. Molecular dynamics show that silicon behaves elastically until ~10 GPa and, at slightly higher pressures, partial dislocations and stacking faults are emitted from the surface. Driven by the high-amplitude stress pulse, these defects travel inwards along specific crystallographic orientations and intersect, leading to further defect creation, additional plastic work, and, at higher pressures, amorphous bands in intersecting patterns. The typical high-pressure solid-solid phase transitions of silicon are not observed whereas the high shear stresses are relaxed by localized dislocation motion/interactions and eventually by directional amorphization, which occurs below the critical hydrostatic pressure for melting of silicon in shock compression. It is therefore proposed that the combined effects of hydrostatic and shear stresses lead to directional amorphization.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AMORPHIZATION  
dc.subject
LASER SHOCK COMPRESSION  
dc.subject
NANOCRYSTALLINE SILICON  
dc.subject
SILICON  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Pressure and shear-induced amorphization of silicon  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-12-05T15:08:24Z  
dc.journal.volume
5  
dc.journal.pagination
74-80  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Zhao, S.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Kad, B.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos  
dc.description.fil
Fil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados Unidos  
dc.description.fil
Fil: Huntington, C. M.. Lawrence Livermore National Laboratory; Estados Unidos  
dc.description.fil
Fil: Park, H. S.. Lawrence Livermore National Laboratory; Estados Unidos  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: More, K. L.. No especifíca;  
dc.description.fil
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos  
dc.journal.title
Extreme Mechanics Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eml.2015.10.001