Mostrar el registro sencillo del ítem

dc.contributor.author
Namias, Rafael  
dc.contributor.author
D'amato, Juan Pablo  
dc.contributor.author
del Fresno, Mirta Mariana  
dc.contributor.author
Vénere, Marcelo  
dc.contributor.author
Pirrone, Nicola  
dc.contributor.author
Bellemare, Marc Emmanuel  
dc.date.available
2022-12-05T14:44:57Z  
dc.date.issued
2015-09  
dc.identifier.citation
Namias, Rafael; D'amato, Juan Pablo; del Fresno, Mirta Mariana; Vénere, Marcelo; Pirrone, Nicola; et al.; Multi-object segmentation framework using deformable models for medical imaging analysis; Springer Heidelberg; Medical And Biological Engineering And Computing; 54; 8; 9-2015; 1181-1192  
dc.identifier.issn
0140-0118  
dc.identifier.uri
http://hdl.handle.net/11336/180170  
dc.description.abstract
Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Heidelberg  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COLLISION CONTROL  
dc.subject
COMPLEX SEGMENTATION  
dc.subject
DEFORMABLE MODELS  
dc.subject
MULTI-OBJECT SEGMENTATION  
dc.subject
SEGMENTATION FRAMEWORK  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multi-object segmentation framework using deformable models for medical imaging analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-12-05T11:02:22Z  
dc.journal.volume
54  
dc.journal.number
8  
dc.journal.pagination
1181-1192  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: del Fresno, Mirta Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: Vénere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: Pirrone, Nicola. Hopital la Timone; Francia  
dc.description.fil
Fil: Bellemare, Marc Emmanuel. Aix-marseille Université; Francia  
dc.journal.title
Medical And Biological Engineering And Computing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s11517-015-1387-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11517-015-1387-3