Mostrar el registro sencillo del ítem

dc.contributor.author
Paskevicius, Mark  
dc.contributor.author
Filsø, Uffe  
dc.contributor.author
Karimi, Fahim  
dc.contributor.author
Puszkiel, Julián Atilio  
dc.contributor.author
Pranzas, Philipp Klaus  
dc.contributor.author
Pistidda, Claudio  
dc.contributor.author
Hoell, Armin  
dc.contributor.author
Welter, Edmund  
dc.contributor.author
Schreyer, Andreas  
dc.contributor.author
Klassen, Thomas  
dc.contributor.author
Dornheim, Martin  
dc.contributor.author
Jensen, Torben  
dc.date.available
2022-12-05T10:36:21Z  
dc.date.issued
2016-01  
dc.identifier.citation
Paskevicius, Mark; Filsø, Uffe; Karimi, Fahim; Puszkiel, Julián Atilio; Pranzas, Philipp Klaus; et al.; Cyclic stability and structure of nanoconfined Ti-doped NaAlH4; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 41; 7; 1-2016; 4159-4167  
dc.identifier.issn
0360-3199  
dc.identifier.uri
http://hdl.handle.net/11336/180089  
dc.description.abstract
NaAlH4 was melt infiltrated within a CO2 activated carbon aerogel, which had been preloaded with TiCl3. Nanoconfinement was verified by Small Angle X-Ray Scattering (SAXS) and the nature of the Ti was investigated with Anomalous SAXS (ASAXS) and X-Ray Absorption Near Edge Structure (XANES) to determine its size and chemical state. The Ti is found to be in a similar state to that found in the bulk Ti-doped NaAlH4 system where it exists as Al1-xTix nanoalloys. Crystalline phases exist within the carbon aerogel pores, which are analysed by in-situ Powder X-Ray Diffraction (PXD) during hydrogen cycling. The in-situ data reveals that the hydrogen release from NaAlH4 and its hydrogen uptake occurs through the Na3AlH6 intermediate when confined at this size scale. The hydrogen capacity from the nanoconfined NaAlH4 is found to initially be much higher in this CO2 activated aerogel compared with previous studies into unactivated aerogels.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HYDROGEN STORAGE  
dc.subject
IN-SITU  
dc.subject
NANOCONFINEMENT  
dc.subject
STRUCTURE  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Cyclic stability and structure of nanoconfined Ti-doped NaAlH4  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-12-02T14:59:50Z  
dc.journal.volume
41  
dc.journal.number
7  
dc.journal.pagination
4159-4167  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Paskevicius, Mark. University Aarhus; Dinamarca  
dc.description.fil
Fil: Filsø, Uffe. University Aarhus; Dinamarca  
dc.description.fil
Fil: Karimi, Fahim. No especifíca;  
dc.description.fil
Fil: Puszkiel, Julián Atilio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Pranzas, Philipp Klaus. No especifíca;  
dc.description.fil
Fil: Pistidda, Claudio. No especifíca;  
dc.description.fil
Fil: Hoell, Armin. No especifíca;  
dc.description.fil
Fil: Welter, Edmund. No especifíca;  
dc.description.fil
Fil: Schreyer, Andreas. No especifíca;  
dc.description.fil
Fil: Klassen, Thomas. No especifíca;  
dc.description.fil
Fil: Dornheim, Martin. No especifíca;  
dc.description.fil
Fil: Jensen, Torben. University Aarhus; Dinamarca  
dc.journal.title
International Journal of Hydrogen Energy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijhydene.2015.12.185