Mostrar el registro sencillo del ítem
dc.contributor.author
Paskevicius, Mark
dc.contributor.author
Filsø, Uffe
dc.contributor.author
Karimi, Fahim
dc.contributor.author
Puszkiel, Julián Atilio

dc.contributor.author
Pranzas, Philipp Klaus
dc.contributor.author
Pistidda, Claudio

dc.contributor.author
Hoell, Armin

dc.contributor.author
Welter, Edmund
dc.contributor.author
Schreyer, Andreas
dc.contributor.author
Klassen, Thomas

dc.contributor.author
Dornheim, Martin

dc.contributor.author
Jensen, Torben

dc.date.available
2022-12-05T10:36:21Z
dc.date.issued
2016-01
dc.identifier.citation
Paskevicius, Mark; Filsø, Uffe; Karimi, Fahim; Puszkiel, Julián Atilio; Pranzas, Philipp Klaus; et al.; Cyclic stability and structure of nanoconfined Ti-doped NaAlH4; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 41; 7; 1-2016; 4159-4167
dc.identifier.issn
0360-3199
dc.identifier.uri
http://hdl.handle.net/11336/180089
dc.description.abstract
NaAlH4 was melt infiltrated within a CO2 activated carbon aerogel, which had been preloaded with TiCl3. Nanoconfinement was verified by Small Angle X-Ray Scattering (SAXS) and the nature of the Ti was investigated with Anomalous SAXS (ASAXS) and X-Ray Absorption Near Edge Structure (XANES) to determine its size and chemical state. The Ti is found to be in a similar state to that found in the bulk Ti-doped NaAlH4 system where it exists as Al1-xTix nanoalloys. Crystalline phases exist within the carbon aerogel pores, which are analysed by in-situ Powder X-Ray Diffraction (PXD) during hydrogen cycling. The in-situ data reveals that the hydrogen release from NaAlH4 and its hydrogen uptake occurs through the Na3AlH6 intermediate when confined at this size scale. The hydrogen capacity from the nanoconfined NaAlH4 is found to initially be much higher in this CO2 activated aerogel compared with previous studies into unactivated aerogels.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
HYDROGEN STORAGE
dc.subject
IN-SITU
dc.subject
NANOCONFINEMENT
dc.subject
STRUCTURE
dc.subject.classification
Nano-materiales

dc.subject.classification
Nanotecnología

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Cyclic stability and structure of nanoconfined Ti-doped NaAlH4
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-12-02T14:59:50Z
dc.journal.volume
41
dc.journal.number
7
dc.journal.pagination
4159-4167
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Paskevicius, Mark. University Aarhus; Dinamarca
dc.description.fil
Fil: Filsø, Uffe. University Aarhus; Dinamarca
dc.description.fil
Fil: Karimi, Fahim. No especifíca;
dc.description.fil
Fil: Puszkiel, Julián Atilio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
dc.description.fil
Fil: Pranzas, Philipp Klaus. No especifíca;
dc.description.fil
Fil: Pistidda, Claudio. No especifíca;
dc.description.fil
Fil: Hoell, Armin. No especifíca;
dc.description.fil
Fil: Welter, Edmund. No especifíca;
dc.description.fil
Fil: Schreyer, Andreas. No especifíca;
dc.description.fil
Fil: Klassen, Thomas. No especifíca;
dc.description.fil
Fil: Dornheim, Martin. No especifíca;
dc.description.fil
Fil: Jensen, Torben. University Aarhus; Dinamarca
dc.journal.title
International Journal of Hydrogen Energy

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijhydene.2015.12.185
Archivos asociados