Mostrar el registro sencillo del ítem

dc.contributor.author
Aydemir, Tuba  
dc.contributor.author
Pastore, Juan Ignacio  
dc.contributor.author
Jimenez Pique, Emilio  
dc.contributor.author
Roa, Joan Josep  
dc.contributor.author
Boccaccini, Aldo R.  
dc.contributor.author
Ballarre, Josefina  
dc.date.available
2022-12-01T17:23:55Z  
dc.date.issued
2021-08  
dc.identifier.citation
Aydemir, Tuba; Pastore, Juan Ignacio; Jimenez Pique, Emilio; Roa, Joan Josep; Boccaccini, Aldo R.; et al.; Morphological and mechanical characterization of chitosan/gelatin/silica-gentamicin/bioactive glass coatings on orthopaedic metallic implant materials; Elsevier Science SA; Thin Solid Films; 732; 138780; 8-2021; 1-10  
dc.identifier.issn
0040-6090  
dc.identifier.uri
http://hdl.handle.net/11336/179847  
dc.description.abstract
Metals are the most widely used materials for orthopedics and dentistry due to their high mechanical properties. However, for certain uses like fixation plates and screws, dental implants, and osseo-articular prosthesis, their surface characteristics such as non-toxic and non-corrosive behavior, good cell adhesion and proliferation, and resistance to bacterial biofilm formation should be accompanied with high mechanical performance. One way to improve metallic implant performance in vivo is to coat them with biopolymer or inorganic thin films. This work describes two multifunctional coating systems for orthopedic titanium and stainless steel implants. Titanium implants were coated with a system consisting of a base hybrid sol-gel layer with bioactive glass particles (applied via spraying) and a top chitosan/gelatin layer with silica-gentamicin nanoparticles (applied via electrophoretic deposition, EPD). Stainless steel implants, which are designed to be removable, were coated only with the top chitosan/gelatin/ silica-gentamicin nanoparticles layer with the aim of providing a temporal attachment to bone and to combat possible bacterial adhesion. The microstructural and mechanical characterization of the coatings was conducted by optical microscopy, transmission and scanning electron microscopy, digital image processing, as well as nanoindentation and nanoscratch tests to advance the understanding of their elastic-plastic, morphologic and adhesive behavior. The coatings were homogeneous, providing good coverage to both substrates. Their surface properties, such as roughness and wettability, indicate that they represent excellent substrates for cell attachment. Bioactive glass particles can be added to titanium implant systems as bioactive components without affecting adhesion or mechanical performance of the chitosan/gelatin/silica-gentamicin nanoparticle EPD coatings. The increase in both hardness and elastic modulus of the coated systems could be due to the presence of the silica-gentamicin nanoparticles and their compaction during the penetration of the indenter. When the samples are subjected to scratch tests, the critical load increases with the reinforcement of the coatings by the silica-gentamicin nanoparticles absorbing the applied load and maintaining the elastic properties of the coatings.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science SA  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOACTIVE GLASSES  
dc.subject
BIOPOLYMERS  
dc.subject
ELECTROPHORETIC DEPOSITION  
dc.subject
FUNCTIONAL COATINGS  
dc.subject
MECHANICAL PROPERTIES  
dc.subject
METALLIC IMPLANTS  
dc.subject.classification
Recubrimientos y Películas  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Morphological and mechanical characterization of chitosan/gelatin/silica-gentamicin/bioactive glass coatings on orthopaedic metallic implant materials  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-20T18:45:13Z  
dc.journal.volume
732  
dc.journal.number
138780  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Aydemir, Tuba. Universitat Erlangen-Nuremberg; Alemania  
dc.description.fil
Fil: Pastore, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina  
dc.description.fil
Fil: Jimenez Pique, Emilio. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Roa, Joan Josep. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Boccaccini, Aldo R.. Universitat Erlangen-Nuremberg; Alemania  
dc.description.fil
Fil: Ballarre, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universitat Erlangen-Nuremberg; Alemania  
dc.journal.title
Thin Solid Films  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.tsf.2021.138780  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0040609021002637