Mostrar el registro sencillo del ítem
dc.contributor.author
Kaufmann, Uriel

dc.contributor.author
Medri, Ivan Vladimir

dc.date.available
2022-12-01T13:02:06Z
dc.date.issued
2016-08
dc.identifier.citation
Kaufmann, Uriel; Medri, Ivan Vladimir; One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign; De Gruyter; Advances in Nonlinear Analysis; 5; 3; 8-2016; 251-259
dc.identifier.issn
2191-9496
dc.identifier.uri
http://hdl.handle.net/11336/179748
dc.description.abstract
Let Ω be a bounded open interval, let p > 1 and γ >, and let m : Ω → ℝ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form - (|u′|p-2u′)′ = m(x) u-γ in Ω, u = 0 on ∂Ω. As a consequence we also derive existence results for other related nonlinearities.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
INDEFINITE NONLINEARITIES
dc.subject
ONE-DIMENSIONAL SINGULAR PROBLEMS
dc.subject
P-LAPLACIAN
dc.subject
POSITIVE SOLUTIONS
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-11-30T22:33:35Z
dc.identifier.eissn
2191-950X
dc.journal.volume
5
dc.journal.number
3
dc.journal.pagination
251-259
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.description.fil
Fil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.journal.title
Advances in Nonlinear Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/anona-2015-0116/html
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1515/anona-2015-0116
Archivos asociados