Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Distributed Target Tracking Using Maximum Likelihood Kalman Filter with Non-Linear Measurements

Huang, Zenghong; Marelli, Damian EdgardoIcon ; Xu, Yong; Fu, Minyue
Fecha de publicación: 12/2021
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Sensors Journal
ISSN: 1530-437X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

We propose a distributed method for tracking a target with linear dynamics and non-linear measurements acquired by a number of sensors. The proposed method is based on a Bayesian tracking technique called maximum likelihood Kalman filter (MLKF), which is known to be asymptotically optimal, in the mean squared sense, as the number of sensors becomes large. This method requires, at each time step, the solution of a maximum likelihood (ML) estimation problem as well as the Hessian matrix of the likelihood function at the optimal. In order to obtain a distributed method, we compute the ML estimate using a recently proposed fully distributed optimization method, which yields the required Hessian matrix as a byproduct of the optimization procedure. We call the algorithm so obtained the distributed MLKF (DMLKF). Numerical simulation results show that DMLKF largely outperforms other available distributed tracking methods, in terms of tracking accuracy, and that it asymptotically approximates the optimal Bayesian tracking solution, as the number of sensors and inter-node information fusion iterations increase.
Palabras clave: BAYESIAN TRACKING , MAXIMUM LIKELIHOOD ESTIMATION , TARGET TRACKING , WIRELESS SENSOR NETWORKS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.427Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/179336
DOI: http://dx.doi.org/10.1109/JSEN.2021.3125153
URL: https://ieeexplore.ieee.org/document/9599711
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Huang, Zenghong; Marelli, Damian Edgardo; Xu, Yong; Fu, Minyue; Distributed Target Tracking Using Maximum Likelihood Kalman Filter with Non-Linear Measurements; Institute of Electrical and Electronics Engineers; IEEE Sensors Journal; 21; 24; 12-2021; 27818-27826
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES