Mostrar el registro sencillo del ítem

dc.contributor.author
Higginbotham, Andrew  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.contributor.author
Marian, Jaime  
dc.contributor.author
Park, Nigel  
dc.contributor.author
Suggit, Matthew  
dc.contributor.author
Wark, Justin S.  
dc.date.available
2017-06-09T19:25:27Z  
dc.date.issued
2011-03  
dc.identifier.citation
Higginbotham, Andrew; Bringa, Eduardo Marcial; Marian, Jaime; Park, Nigel; Suggit, Matthew; et al.; Simulations of copper single crystals subjected to rapid shear; American Institute Of Physics; Journal Of Applied Physics; 109; 6; 3-2011; 63530-63536  
dc.identifier.issn
0021-8979  
dc.identifier.uri
http://hdl.handle.net/11336/17909  
dc.description.abstract
We report on nonequilibrium molecular dynamics simulations of single crystals of copper experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes a single dislocation dipole is subjected to a total shear strain of close to 10% on time-scales ranging from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in the system due to the subsequent plastic work can be determined from the initial elastic strain energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation velocity, which itself is a function of shear stress. A determination of the stress-dependence of the dislocation velocity allows us to construct a simple analytic model for the temperature rise in the system as a function of strain rate, and this model is found to be in good agreement with the simulations. For the effective dislocation density within the simulations, 7.8×1011cm−27.8×1011cm−2, we find that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the final temperature. We discuss these results in the context of the growing interest in producing high pressure, solid-state matter, by quasi-isentropic (rather than shock) compression.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute Of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Copper  
dc.subject
Dislocation Dipoles  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Simulations of copper single crystals subjected to rapid shear  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-07T13:40:42Z  
dc.journal.volume
109  
dc.journal.number
6  
dc.journal.pagination
63530-63536  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Higginbotham, Andrew. University Of Oxford. Department Of Physics; Reino Unido  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Marian, Jaime. Lawrence Livermore National Laboratory. Physical and Life Sciences Directorate; Estados Unidos  
dc.description.fil
Fil: Park, Nigel.  
dc.description.fil
Fil: Suggit, Matthew. University Of Oxford. Department Of Physics; Reino Unido  
dc.description.fil
Fil: Wark, Justin S.. University Of Oxford. Department Of Physics; Reino Unido  
dc.journal.title
Journal Of Applied Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3560912  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.3560912