Mostrar el registro sencillo del ítem

dc.contributor.author
Rorai, C.  
dc.contributor.author
Mininni, Pablo Daniel  
dc.contributor.author
Pouquet, A.  
dc.date.available
2017-06-09T19:20:46Z  
dc.date.issued
2014-04  
dc.identifier.citation
Rorai, C.; Mininni, Pablo Daniel; Pouquet, A.; Turbulence comes in bursts in stably stratified flows; American Physical Society; Physical Review E: Statistical, Nonlinear And Soft Matter Physics; 89; 4; 4-2014; 1-8; 043002  
dc.identifier.issn
1539-3755  
dc.identifier.uri
http://hdl.handle.net/11336/17908  
dc.description.abstract
There is a clear distinction between simple laminar and complex turbulent fluids; however, in some cases, as forthe nocturnal planetary boundary layer, a stable and well-ordered flow can develop intense and sporadic bursts of turbulent activity that disappear slowly in time. This phenomenon is ill understood and poorly modeled and yet it is central to our understanding of weather and climate dynamics. We present here data from direct numerical simulations of stratified turbulence on grids of 20483 points that display the somewhat paradoxical result of measurably stronger events for more stable flows, not only in the temperature and vertical velocity derivatives as commonplace in turbulence, but also in the amplitude of the fields themselves, contrary to what happens for homogenous isotropic turbulent flows. A flow visualization suggests that the extreme values take place in Kelvin-Helmoltz overturning events and fronts that develop in the field variables. These results are confirmed by the analysis of a simple model that we present. The model takes into consideration only the vertical velocity and temperature fluctuations and their vertical derivatives. It indicates that in stably stratified turbulence, the stronger bursts can occur when the flow is expected to be more stable. The bursts are generated by a rapid nonlinear amplification of energy stored in waves and are associated with energetic interchanges between vertical velocity and temperature (or density) fluctuations in a range of parameters corresponding to the well-known saturation regime of stratified turbulence.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Stratification  
dc.subject
Intermittency  
dc.subject
Turbulence  
dc.subject
Planetary Boundary Layer  
dc.subject.classification
Física de los Fluidos y Plasma  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Turbulence comes in bursts in stably stratified flows  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-08T21:03:49Z  
dc.journal.volume
89  
dc.journal.number
4  
dc.journal.pagination
1-8; 043002  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
College Park  
dc.description.fil
Fil: Rorai, C.. International Centre for Theoretical Physics; Italia  
dc.description.fil
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Pouquet, A.. State University Of Colorado Boulder; Estados Unidos  
dc.journal.title
Physical Review E: Statistical, Nonlinear And Soft Matter Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.89.043002  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.043002  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1308.6564.pdf