Mostrar el registro sencillo del ítem

dc.contributor.author
Dianda, Daniela Fernanda  
dc.contributor.author
Pagura, José Alberto  
dc.contributor.author
Ballarini, Nicolás Marcelo  
dc.date.available
2022-11-25T12:57:44Z  
dc.date.issued
2017-01  
dc.identifier.citation
Dianda, Daniela Fernanda; Pagura, José Alberto; Ballarini, Nicolás Marcelo; On confidence intervals construction for measurement system capability indicators; International Refereed Journal of Engineering and Science; International Refereed Journal of Engineering and Science; 6; 1; 1-2017; 8-16  
dc.identifier.issn
2319-1821  
dc.identifier.uri
http://hdl.handle.net/11336/178963  
dc.description.abstract
There are many criteria that have been proposed to determine the capability of a measurement system, all based on estimates of variance components. Some of them are the Precision to Tolerance Ratio, the Signal to Noise Ratio and the probabilities of misclassification.For most of these indicators, there are no exact confidence intervals, since the exact distributions of the point estimators are not known. In such situations, two approaches are widely used to obtain approximate confidence intervals: the Modified Large Samples (MLS) methods initially proposed by Graybill and Wang, and the construction of Generalized Confidence Intervals (GCI) introduced by Weerahandi.In this work we focus on the construction of the confidence intervals by the generalized approach in the context of Gauge repeatability and reproducibility studies. Since GCI are obtained by simulation procedures, we analyze the effect of the number of simulations on the variability of the confidence limits as well as the effect of the size of the experiment designed to collect data on the precision of the estimates. Both studies allowed deriving some practical implementation guidelines in the use of the GCI approach.We finally present a real case study in which this technique was applied to evaluate the capability of a destructive measurement system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
International Refereed Journal of Engineering and Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GAUGE R&R STUDIES  
dc.subject
GENERALIZED CONFIDENCE INTERVALS  
dc.subject
DESTRUCTIVE MEASUREMENTS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On confidence intervals construction for measurement system capability indicators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-11-24T13:18:58Z  
dc.identifier.eissn
2319-183X  
dc.journal.volume
6  
dc.journal.number
1  
dc.journal.pagination
8-16  
dc.journal.pais
India  
dc.description.fil
Fil: Dianda, Daniela Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Pagura, José Alberto. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Ballarini, Nicolás Marcelo. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina  
dc.journal.title
International Refereed Journal of Engineering and Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.irjes.com/Papers/vol6-issue1/B610816.pdf