Artículo
Average dynamics of a finite set of coupled phase oscillators
Fecha de publicación:
03/2014
Editorial:
American Institute Of Physics
Revista:
Chaos An Interdisciplinary Jr Of Nonlinear Science
ISSN:
1054-1500
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Many fields of physics deal with the macroscopic description of large systems, composed by N interacting members. In some cases, it is possible to address them in terms of a mean field theory, designed to describe the parameters accounting for the average behavior of the system. This approach requires the study of a surrogate problem, consisting of an infinite number of interacting elements. In this work, we study the macroscopic dynamic of a system of N non-linear interacting units. For that, we use topological tools in order to compare the system of N units with its surrogate with infinite elements. We report, for a particular problem, a minimum number of units required for the two systems to be topologically equivalent.
Palabras clave:
Chaos
,
Phase Oscillators
,
Mean Field
,
Bifurcations
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Dima, Germán César; Mindlin, Bernardo Gabriel; Average dynamics of a finite set of coupled phase oscillators; American Institute Of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 24; 3-2014; 1-7; 23112
Compartir
Altmétricas