Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A combined region growing and deformable model method for extraction of closed surfaces in 3D CT and MRI scans

del Fresno, Mirta Mariana; Vénere, M.; Clausse, AlejandroIcon
Fecha de publicación: 07/2009
Editorial: Pergamon-Elsevier Science Ltd
Revista: Computerized Medical Imaging and Graphics
ISSN: 0895-6111
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Image segmentation of 3D medical images is a challenging problem with several still not totally solved practical issues, such as noise interference, variable object structures and image artifacts. This paper describes a hybrid 3D image segmentation method which combines region growing and deformable models to obtain accurate and topologically preserving surface structures of anatomical objects of interest. The proposed strategy starts by determining a rough but robust approximation of the objects using a region-growing algorithm. Then, the closed surface mesh that encloses the region is constructed and used as the initial geometry of a deformable model for the final refinement. This integrated strategy provides an alternative solution to one of the flaws of traditional deformable models, achieving good refinements of internal surfaces in few steps. Experimental segmentation results of complex anatomical structures on both simulated and real data from MRI scans are presented, and the method is assessed by comparing with standard reference segmentations of head MRI. The evaluation was mainly based on the average overlap measure, which was tested on the segmentation of white matter, corresponding to a simulated brain data set, showing excellent performance exceeding 90% accuracy. In addition, the algorithm was applied to the detection of anatomical head structures on two real MRI and one CT data set. The final reconstructions resulting from the deformable models produce high quality meshes suitable for 3D visualization and further numerical analysis. The obtained results show that the approach achieves high quality segmentations with low computational complexity.
Palabras clave: DEFORMABLE SURFACE MODELS , HYBRID METHODS , IMAGE SEGMENTATION , MRI , REGION GROWING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 981.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/178560
URL: https://www.sciencedirect.com/science/article/pii/S0895611109000251
DOI: https://doi.org/10.1016/j.compmedimag.2009.03.002
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
del Fresno, Mirta Mariana; Vénere, M.; Clausse, Alejandro; A combined region growing and deformable model method for extraction of closed surfaces in 3D CT and MRI scans; Pergamon-Elsevier Science Ltd; Computerized Medical Imaging and Graphics; 33; 5; 7-2009; 369-376
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES