Mostrar el registro sencillo del ítem

dc.contributor.author
Trottet, G.  
dc.contributor.author
Raulin, J. P.  
dc.contributor.author
Mackinnon, A.  
dc.contributor.author
Giménez de Castro, C. G.  
dc.contributor.author
Simoes, P. J. A.  
dc.contributor.author
Cabezas, D.  
dc.contributor.author
de la Luz, V.  
dc.contributor.author
Luoni, Maria Luisa  
dc.contributor.author
Kaufmann, P.  
dc.date.available
2017-06-08T21:25:01Z  
dc.date.issued
2015-10  
dc.identifier.citation
Trottet, G.; Raulin, J. P.; Mackinnon, A.; Giménez de Castro, C. G.; Simoes, P. J. A.; et al.; Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT; Springer; Solar Physics; 290; 10-2015; 2809–2826  
dc.identifier.issn
0038-0938  
dc.identifier.uri
http://hdl.handle.net/11336/17844  
dc.description.abstract
Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J.768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), HαHα , and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and αα particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at ∼800 keV∼800 keV . We show that the high-energy part (above ∼800 keV∼800 keV ) of this distribution is responsible for the high-frequency radio emission ( >20 GHz>20 GHz ) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ( ∼80 %∼80 % ) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J.242, 336, 1980), this thin source is found to be at temperatures T ∼8000 K∼8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and αα particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T ∼5000 K∼5000 K , below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Radio Burts  
dc.subject
X-Ray Burts  
dc.subject
Flares  
dc.subject
Chromosphere  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Origin of the 30 THz Emission Detected During the 2012 March 13 solar flare at 17:20 UT  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-06T14:49:33Z  
dc.journal.volume
290  
dc.journal.pagination
2809–2826  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Trottet, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia  
dc.description.fil
Fil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; Brasil  
dc.description.fil
Fil: Mackinnon, A.. University of Glasgow; Reino Unido  
dc.description.fil
Fil: Giménez de Castro, C. G.. Universidade Presbiteriana Mackenzie; Brasil  
dc.description.fil
Fil: Simoes, P. J. A.. University of Glasgow; Reino Unido  
dc.description.fil
Fil: Cabezas, D.. Universidade Presbiteriana Mackenzie; Brasil  
dc.description.fil
Fil: de la Luz, V.. Universidad Nacional Autónoma de México; México  
dc.description.fil
Fil: Luoni, Maria Luisa. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.description.fil
Fil: Kaufmann, P.. University of Campinas; Brasil  
dc.journal.title
Solar Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1509.06336  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11207-015-0782-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11207-015-0782-0