Mostrar el registro sencillo del ítem

dc.contributor.author
Sánchez, Francisco Adrián  
dc.contributor.author
Pereda, Selva  
dc.date.available
2022-11-22T03:29:06Z  
dc.date.issued
2021  
dc.identifier.citation
Phase equilibrium engineering in biorefinery reactive systems: n-alkanol acety-lation; 31st European Symposium on Applied Thermodynamics ESAT 2021; París; Francia; 2021; 125-125  
dc.identifier.uri
http://hdl.handle.net/11336/178413  
dc.description.abstract
In recent years, the need to diversify the demand for liquid fuels has promoted the research in new and advanced biofuels. In addition, the valorisation of available renewable resources also calls for other products like solvents and value-added chemicals, to make the whole process competitive in today’s market. In this context, the synthesis paths of various biobased value-added products involve reversible chemical reactions; therefore, process development and optimization require modelling the chemical equilibrium (CE) of these systems, as well as simultaneous chemical and phase equilibrium (CPE). There are many other applications of such models, for example in the biphasic dehydration and/or hydrogenation reactors or in the well-developed reactive distillation units, where phase separation is design to improve the reaction yield. In this sense, esterification and transesterification reactions are found in many productive pathways of value-added products; such as, biodiesel, glycerol acetates, or valeric biofuels, to name a few. In any case, CE calculation requires, a priori, the formation Gibbs energy of each component involved in the reaction (Δgf) or the equilibrium constant (K), which is equivalent to the former. However, this information is not always available and hence, K is frequently correlated to CE experimental data (Bucalá et al., 2006; Schmid et al., 2008). There are other examples that, even though K is available, it is disregarded due to parametric sensitivity and again K is correlated with CE experimental data using a thermodynamic model tuned to phase equilibrium data (Grob & Hasse, 2014; Riechert et al., 2015). In particular, Riechert et al. discuss the influence of the physical formalism of the thermodynamic model, and conclude that those models that take into account the molecular phenomena that occur in the multicomponent mixture achieve a better K correlation. However, they do not contrast their results against literature values of K or Δgf. In this work, we challenge the Group Contribution with Association Equation of State (Sánchez et al., 2011) (GCA EOS) to predict the CPE of various acetylation reactions of nalkanols based on Δgf ig reported in literature and experimental databases (Rowley et al., 2003), i.e. without correlating CE data. We select this model system because of the large number of experimental data available and the advantage of using a group contribution model to assess homologous series. Despite of the parametric sensitivity of these systems CE, we show that the GCA EOS can predict CPE of this homologous series.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IFP Energies Nouveles  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOREFINERY  
dc.subject
PHASE EQUILIBRIUM ENGINEERING  
dc.subject
CHEMICAL EQUILIBRIUM  
dc.subject
ACETYLATION  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Phase equilibrium engineering in biorefinery reactive systems: n-alkanol acety-lation  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-11-09T15:43:01Z  
dc.journal.pagination
125-125  
dc.journal.pais
Francia  
dc.journal.ciudad
París  
dc.description.fil
Fil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ifpenergiesnouvelles.com/article/esat-2021-access-replay  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
31st European Symposium on Applied Thermodynamics ESAT 2021  
dc.date.evento
2021-07-05  
dc.description.ciudadEvento
París  
dc.description.paisEvento
Francia  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Paris Mines Tech  
dc.description.institucionOrganizadora
Instituto Francés del Petróleo Energies Nouveles  
dc.source.libro
31st European Symposium on Applied Thermodynamics ESAT 2021- 31st Abstract Book  
dc.date.eventoHasta
2021-07-09  
dc.type
Conferencia