Artículo
On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems
Fecha de publicación:
10/2018
Editorial:
American Mathematical Society
Revista:
Transactions of the American Mathematical Society
ISSN:
0002-9947
e-ISSN:
1088-6850
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Under mild conditions we show that the affinity dimension of a planar self-affine set is equal to the supremum of the Lyapunov dimensions of self-affine measures supported on self-affine proper subsets of the original set. These self-affine subsets may be chosen so as to have stronger separation properties and in such a way that the linear parts of their affinities are positive matrices. Combining this result with some recent breakthroughs in the study of self-affine measures and their associated Furstenberg measures, we obtain new criteria under which the Hausdorff dimension of a self-affine set equals its affinity dimension. For example, applying recent results of Bárány, Hochman–Solomyak, and Rapaport, we provide many new explicit examples of self-affine sets whose Hausdorff dimension equals its affinity dimension, and for which the linear parts do not satisfy any positivity or domination assumptions.
Palabras clave:
Self-affine sets
,
Affinity dimension
,
Hausdorff dimension
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Morris, Ian D.; Shmerkin, Pablo Sebastian; On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems; American Mathematical Society; Transactions of the American Mathematical Society; 371; 3; 10-2018; 1547-1582
Compartir
Altmétricas