Artículo
Dynamic indoor localization using maximum likelihood particle filtering
Fecha de publicación:
02/2021
Editorial:
Molecular Diversity Preservation International
Revista:
Sensors
ISSN:
1424-8220
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A popular approach for solving the indoor dynamic localization problem based on WiFi measurements consists of using particle filtering. However, a drawback of this approach is that a very large number of particles are needed to achieve accurate results in real environments. The reason for this drawback is that, in this particular application, classical particle filtering wastes many unnecessary particles. To remedy this, we propose a novel particle filtering method which we call maximum likelihood particle filter (MLPF). The essential idea consists of combining the particle prediction and update steps into a single one in which all particles are efficiently used. This drastically reduces the number of particles, leading to numerically feasible algorithms with high accuracy. We provide experimental results, using real data, confirming our claim.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Wang, Wenxu; Marelli, Damian Edgardo; Fu, Minyue; Dynamic indoor localization using maximum likelihood particle filtering; Molecular Diversity Preservation International; Sensors; 21; 4; 2-2021; 1-18
Compartir
Altmétricas