Mostrar el registro sencillo del ítem
dc.contributor.author
López Gamundí, Oscar
dc.contributor.author
Limarino, Carlos Oscar
dc.contributor.author
Isbell, John L.
dc.contributor.author
Pauls, Kathryn
dc.contributor.author
Cesari, Silvia Nelida
dc.contributor.author
Alonso Muruaga, Pablo Joaquin
dc.date.available
2022-11-02T10:14:32Z
dc.date.issued
2021-04
dc.identifier.citation
López Gamundí, Oscar; Limarino, Carlos Oscar; Isbell, John L.; Pauls, Kathryn; Cesari, Silvia Nelida; et al.; The late Paleozoic Ice Age along the southwestern margin of Gondwana: Facies models, age constraints, correlation and sequence stratigraphic framework; Pergamon-Elsevier Science Ltd; Journal of South American Earth Sciences; 107; 4-2021; 1-34
dc.identifier.issn
0895-9811
dc.identifier.uri
http://hdl.handle.net/11336/175915
dc.description.abstract
The southwestern margin of South America offers a complete record of the Late Paleozoic Ice Age (LPIA) that affected the Gondwana supercontinent. The tripartite division of LPIA glacial episodes has been refined with the help of new radiometric dates and biostratigraphic (flora and fauna) zonations in recent years to five shorter-lived discrete events: 1. Latest Devonian-earliest Tournaisian, 2. Tournaisian, 3. Visean, 4. Serpukhovian-Early Bashkirian, 5. late Pennsylvanian-earliest Permian. These glacial events are capped by postglacial transgressive deposits with marine fauna. The unbalanced preservation potential of the glacial deposits, skewed toward the glaciomarine sediments, provides an uneven stratigraphic record with few cases of continental glacial sedimentation, confined to the Serpukhovian-Early Bashkirian event, and numerous examples of glacial sedimentation in marine environments. Glacial sedimentation in marine settings has been grouped in two main facies associations: a valley-glacier-retreat (fjord) facies association and a submarine-retreat (glaciomarine apron) facies association in open-marine areas. Transitional facies, correspondent to those formed by the flooding of valleys during postglacial transgressions, are widely distributed along the Protoprecordillera in western Argentina, where paleofjord successions are well exposed particularly in western Paganzo Basin, and mapped in subsurface in the Tarija basin. A general paleofjord model includes (from base to top) the following stages: (i) Incision of paleovalley and deposition of subglacial diamictites in ice contact deltas, (ii) Early Transgressive stage characterized by resedimentation of subglacial material by subaqueous sediment gravity flows and slumps in proglacial settings, (iii) Maximum flooding (late transgressive stage) dominated by black shales or laminated mudstones related to a marine incursion that flooded valleys; normal marine or brackish conditions may dominate this stage and (iv) Highstand: progradation of a fluvial-deltaic system including in some cases Gilbert-type deltas. In glaciomarine apron environments, the basal facies includes massive clast-supported conglomerates, with few striated and polished clasts, followed by fining-upward successions including thinly bedded diamictites with ice-rafted debris (IRD) and locally contorted sandstone masses in diamictite beds, indicative of mass-emplacement mechanisms. The presence of inter- and intratill pavements suggests glacial advance/retreat fluctuations along the basin margins. Deglaciation sequences, reflecting deposition mainly during the retreat of ice sheets, ice caps and alpine glaciers and successive deglaciation, can be used as operational tools for the analysis of glacial successions in southwestern Gondwana. They are characterized as rather simple upward-fining successions in open marine settings as exemplified in most of the Calingasta-Uspallata Basin,Claromecó Basin (and adjacent Ventana foldbelt, VFB) and central portions of the Paraná and Karoo basins. In more proximal areas (i.e., paleofjords) this vertical trend is commonly punctuated with deltaic wedges fed by nearby provenance areas. The late Paleozoic glacial-related successions of southwestern Gondwana exhibit a common tripartite motif, equivalent to second-order sequences with estimated durations of 10–80 Myr. The lower section corresponds to glacial and glacially-influenced diamictites; the middle interval is initiated with postglacial transgressions. The lower and middle intervals correspond to the deglaciation sequence as described and identified in several basins of Gondwana. Finally, the upper term includes coastal progradation, followed in some places by continentalization, accompanied in many sectors by increasing aridization. Examples of second-order sequences can be identified in the thick late Paleozoic successions of the Paraná and Karoo basins and in the VFB. Thinner second order sequences can be identified in the Calingasta-Uspallata, Rio Blanco, Paganzo and San Rafael basins. In the Paganzo and San Rafael basins the middle interval is also punctuated by short lived marine ingressions. The basal sequence boundary is commonly an abrasion surface (glacial erosion surface, GES) developed on bedrock. Deglaciation sequences are assigned to third order sequences made up, when present, of a thin lowstand system tract (LST) of subglacial deposits followed upward by thick glaciomarine and glacially influenced sediments. These facies are part of a thick transgressive systems tract (TST) that culminates with marine shales that reflect interglacial or postglacial conditions during ice retreat. Thus, the deglaciation sequences are proposed to be third order sequences made up of LST-TST or exclusively TST.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Late Paleozoic
dc.subject
Ice Age
dc.subject
Gondwana
dc.subject
Sequence stratigraphy
dc.subject.classification
Geología
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The late Paleozoic Ice Age along the southwestern margin of Gondwana: Facies models, age constraints, correlation and sequence stratigraphic framework
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-10-12T14:31:40Z
dc.journal.volume
107
dc.journal.pagination
1-34
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: López Gamundí, Oscar. No especifíca;
dc.description.fil
Fil: Limarino, Carlos Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
dc.description.fil
Fil: Isbell, John L.. University of Wisconsin; Estados Unidos
dc.description.fil
Fil: Pauls, Kathryn. University of Wisconsin; Estados Unidos
dc.description.fil
Fil: Cesari, Silvia Nelida. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina
dc.description.fil
Fil: Alonso Muruaga, Pablo Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
dc.journal.title
Journal of South American Earth Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jsames.2020.103056
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S089598112030599X
Archivos asociados