Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Class of Variable Metric Decomposition Methods for Monotone Variational Inclusions

Lotito, Pablo AndresIcon ; Parente, Lisandro ArmandoIcon ; Solodov, M.
Fecha de publicación: 12/2008
Editorial: Heldermann Verlag
Revista: Journal of Convex Analysis
ISSN: 0944-6532
e-ISSN: 2363-6394
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

We extend the general decomposition scheme of [32], which is based on the hybrid inexact proximal point method of [38], to allow the use of variable metric in subproblems, along the lines of [23]. We show that the new general scheme includes as special cases the splitting method for composite mappings [25] and the proximal alternating directions method [13, 17] (in addition to the decomposition methods of [10, 42] that were already covered by [32]). Apart from giving a unified insight into the decomposition methods in question and openning the possibility of using variable metric, which is a computationally important issue, this development also provides linear rate of convergence results not previously available for splitting of composite mappings and for the proximal alternating directions methods. [10] X. Chen and M. Teboulle. A proximal-based decomposition method for convex minimization problems. Mathematical Programming, 64:81–101, 1994.Mathematical Programming, 64:81–101, 1994. [13] J. Eckstein. Some saddle-function splitting methods for convex programming. Optimization Methods and Software, 4:75–83, 1994. [17] B. He, L.Z. Liao, D. Han and H. Yang. A new inexact alternating directions method for monotone variational inequalities. Mathematical Programming, 92:103–118, 2002.Mathematical Programming, 92:103–118, 2002. [23] L.A. Parente, P.A. Lotito and M.V. Solodov. A class of inexact variable metric proximal point algorithms. SIAM Journal on Optimization, 19:240–260, 2008. [25] T. Pennanen. A splitting method for composite mappings. [25] T. Pennanen. A splitting method for composite mappings. Numerical Functional Analysis and Optimization, 23:875–890, 2002. [25] T. Pennanen. A splitting method for composite mappings. [25] T. Pennanen. A splitting method for composite mappings. Numerical Functional Analysis and Optimization, 23:875–890, 2002. SIAM Journal on Optimization, 19:240–260, 2008. [25] T. Pennanen. A splitting method for composite mappings. [25] T. Pennanen. A splitting method for composite mappings. Numerical Functional Analysis and Optimization, 23:875–890, 2002. [25] T. Pennanen. A splitting method for composite mappings. Numerical Functional Analysis and Optimization, 23:875–890, 2002. [32] M.V. Solodov. A class of decomposition methods for convex optimization and monotone variational inclusions via the hybrid inexact proximal point framework. Optimization Methods and Software, 19:557–575, 2004.Optimization Methods and Software, 19:557–575, 2004. [38] M.V. Solodov and B.F. Svaiter. A unified framework for some inexact proximal point algorithms. Numerical Functional Analysis and Optimization, 22:1013–1035, 2001.Numerical Functional Analysis and Optimization, 22:1013–1035, 2001. [42] P. Tseng. Alternating projection-proximal methods for convex programming and variational inequalities. SIAM Journal on Optimization, 7:951–965, 1997.SIAM Journal on Optimization, 7:951–965, 1997.
Palabras clave: PROXIMAL POINT METHODS , VARIABLE METRIC , SPLITTING DECOMPOSITION , VARIATIONAL INCLUSION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 252.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/175876
URL: https://pages.cs.wisc.edu/~solodov/lps08decomp.pdf
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Lotito, Pablo Andres; Parente, Lisandro Armando; Solodov, M.; A Class of Variable Metric Decomposition Methods for Monotone Variational Inclusions; Heldermann Verlag; Journal of Convex Analysis; 16; 12-2008; 857-880
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES