Mostrar el registro sencillo del ítem

dc.contributor.author
Torres Sanchez, Alejandro  
dc.contributor.author
Millán, Raúl Daniel  
dc.contributor.author
Arroyo Balaguer, Marino  
dc.date.available
2022-11-01T13:11:32Z  
dc.date.issued
2019-06  
dc.identifier.citation
Torres Sanchez, Alejandro; Millán, Raúl Daniel; Arroyo Balaguer, Marino; Modelling fluid deformable surfaces with an emphasis on biological interfaces; Cambridge University Press; Journal of Fluid Mechanics; 872; 6-2019; 218-271  
dc.identifier.issn
0022-1120  
dc.identifier.uri
http://hdl.handle.net/11336/175807  
dc.description.abstract
Fluid deformable surfaces are ubiquitous in cell and tissue biology, including lipid bilayers, the actomyosin cortex or epithelial cell sheets. These interfaces exhibit a complex interplay between elasticity, low Reynolds number interfacial hydrodynamics, chemistry and geometry, and govern important biological processes such as cellular traffic, division, migration or tissue morphogenesis. To address the modelling challenges posed by this class of problems, in which interfacial phenomena tightly interact with the shape and dynamics of the surface, we develop a general continuum mechanics and computational framework for fluid deformable surfaces. The dual solid-fluid nature of fluid deformable surfaces challenges classical Lagrangian or Eulerian descriptions of deforming bodies. Here, we extend the notion of arbitrarily Lagrangian-Eulerian (ALE) formulations, well-established for bulk media, to deforming surfaces. To systematically develop models for fluid deformable surfaces, which consistently treat all couplings between fields and geometry, we follow a nonlinear Onsager formalism according to which the dynamics minimizes a Rayleighian functional where dissipation, power input and energy release rate compete. Finally, we propose new computational methods, which build on Onsager's formalism and our ALE formulation, to deal with the resulting stiff system of higher-order partial differential equations. We apply our theoretical and computational methodology to classical models for lipid bilayers and the cell cortex. The methods developed here allow us to formulate/simulate these models in their full three-dimensional generality, accounting for finite curvatures and finite shape changes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cambridge University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CAPSULE/CELL DYNAMICS  
dc.subject
COMPUTATIONAL METHODS  
dc.subject
MEMBRANES  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Biofísica  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Modelling fluid deformable surfaces with an emphasis on biological interfaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-25T14:42:35Z  
dc.journal.volume
872  
dc.journal.pagination
218-271  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Torres Sanchez, Alejandro. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Millán, Raúl Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Arroyo Balaguer, Marino. Universidad Politécnica de Catalunya; España. Barcelona Institute Of Science And Technology.; España  
dc.journal.title
Journal of Fluid Mechanics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/modelling-fluid-deformable-surfaces-with-an-emphasis-on-biological-interfaces/7D544C3F5CDD8F5F6C8291DB544057CA  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1017/jfm.2019.341