Mostrar el registro sencillo del ítem

dc.contributor.author
Aryal, Gaurab  
dc.contributor.author
Gabrielli, Maria Florencia  
dc.contributor.author
Vuong, Quang  
dc.date.available
2022-11-01T12:27:57Z  
dc.date.issued
2019-10  
dc.identifier.citation
Aryal, Gaurab; Gabrielli, Maria Florencia; Vuong, Quang; Semiparametric estimation of first-price auction models; American Statistical Association; Journal Of Business & Economic Statistics; 39; 2; 10-2019; 1-14  
dc.identifier.issn
0735-0015  
dc.identifier.uri
http://hdl.handle.net/11336/175781  
dc.description.abstract
In this article, we propose a two-step semiparametric procedure to estimate first-price auction models. In the first step, we estimate the bid density and distribution using local polynomial method, and recover a sample of (pseudo) private values. In the second step, we apply the method of moments to the sample of private values to estimate a finite set of parameters that characterize the density of private values. We show that our estimator attains the parametric consistency rate and is asymptotically normal. And we also determine its asymptotic variance. The advantage of our approach is that it can accommodate multiple auction covariates. Monte Carlo exercises show that the estimator performs well both in estimating the value density and in choosing the revenue maximizing reserve price. Supplementary materials for this article are available online.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Statistical Association  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EMPIRICAL AUCTIONS  
dc.subject
GMM  
dc.subject
LOCAL POLYNOMIAL  
dc.subject
SEMIPARAMETRIC ESTIMATOR  
dc.subject.classification
Economía, Econometría  
dc.subject.classification
Economía y Negocios  
dc.subject.classification
CIENCIAS SOCIALES  
dc.title
Semiparametric estimation of first-price auction models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-25T14:41:59Z  
dc.journal.volume
39  
dc.journal.number
2  
dc.journal.pagination
1-14  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Boston  
dc.description.fil
Fil: Aryal, Gaurab. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Gabrielli, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas. Centro de Investigación Cuyo; Argentina  
dc.description.fil
Fil: Vuong, Quang. University of New York; Estados Unidos  
dc.journal.title
Journal Of Business & Economic Statistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/07350015.2019.1665530  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/07350015.2019.1665530