Mostrar el registro sencillo del ítem

dc.contributor.author
Fernández Albanesi, Luisa Francisca  
dc.contributor.author
Arneodo Larochette, Pierre Paul  
dc.contributor.author
Gennari, Fabiana Cristina  
dc.date.available
2017-06-06T18:01:28Z  
dc.date.issued
2013-09  
dc.identifier.citation
Fernández Albanesi, Luisa Francisca; Arneodo Larochette, Pierre Paul; Gennari, Fabiana Cristina; Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation; Elsevier; International Journal Of Hydrogen Energy; 38; 28; 9-2013; 12325-12334  
dc.identifier.issn
0360-3199  
dc.identifier.uri
http://hdl.handle.net/11336/17575  
dc.description.abstract
The lithium amide–lithium hydride system (LiNH2–LiH) is one of the most attractive light-weight materials for hydrogen storage. In an effort to improve its hydrogen sorption kinetics, the effect of 1 mol% AlCl3 addition to LiNH2–LiH system was systematically investigated by differential scanning calorimetry, X-ray diffraction, Fourier transform infrared analysis and hydrogen volumetric measurements. It is shown that Al3+ is incorporated into the LiNH2 structure by partial substitution of Li+ forming a new amide in the Li–Al–N–H system, which is reversible under hydriding/dehydriding cycles. This new substituted amide displays improved hydrogen storage properties with respect to LiNH2–LiH. In fact, a stable hydrogen storage capacity of about 4.5–5.0 wt% is observed under cycling and is completely desorbed in 30 min at 275 °C for the Li–Al–N–H system. Moreover, the concurrent incorporation of Al3+ and the presence of LiH are effective for mitigating the ammonia release. The results reveal a common reaction pathway for LiNH2–LiH and LiNH2–LiH plus 1 mol% AlCl3 systems, but the thermodynamic properties are changed by the inclusion of Al3+ in the LiNH2 structure. These findings have important implications for tailoring the properties of the Li–N–H system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Amide  
dc.subject
Hydrogen Storage  
dc.subject
Complex Hydride  
dc.subject
Desorption  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2015-06-24T20:21:29Z  
dc.journal.volume
38  
dc.journal.number
28  
dc.journal.pagination
12325-12334  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Fernández Albanesi, Luisa Francisca. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Arneodo Larochette, Pierre Paul. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
International Journal Of Hydrogen Energy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijhydene.2013.07.030  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360319913017308?via%3Dihub