Mostrar el registro sencillo del ítem
dc.contributor.author
Bustamante, Carlos Mauricio
dc.contributor.author
Ramírez, Francisco Fernando
dc.contributor.author
Sanchez, Cristian Gabriel
dc.contributor.author
Scherlis, Damián A.
dc.date.available
2022-10-31T14:08:07Z
dc.date.issued
2019-08
dc.identifier.citation
Bustamante, Carlos Mauricio; Ramírez, Francisco Fernando; Sanchez, Cristian Gabriel; Scherlis, Damián A.; Multiscale approach to electron transport dynamics; American Institute of Physics; Journal of Chemical Physics; 151; 8; 8-2019; 1-12
dc.identifier.issn
0021-9606
dc.identifier.uri
http://hdl.handle.net/11336/175572
dc.description.abstract
Molecular simulations of transport dynamics in nanostructures usually require the implementation of open quantum boundary conditions. This can be instrumented in different frameworks including Green's functions, absorbing potentials, or the driven Liouville von Neumann equation, among others. In any case, the application of these approaches involves the use of large electrodes that introduce a high computational demand when dealing with first-principles calculations. Here, we propose a hybrid scheme where the electrodes are described at a semiempirical, tight binding level, coupled to a molecule or device represented with density functional theory (DFT). This strategy allows us to use massive electrodes at a negligible computational cost, preserving the accuracy of the DFT method in the modeling of the transport properties, provided that the electronic structure of every lead is properly defined to behave as a conducting fermionic reservoir. We study the nature of the multiscale coupling and validate the methodology through the computation of the tunneling decay constant in polyacetylene and of quantum interference effects in an aromatic ring. The present implementation is applied both in microcanonical and grand-canonical frameworks, in the last case using the Driven Liouville von Neumann equation, discussing the advantages of one or the other. Finally, this multiscale scheme is employed to investigate the role of an electric field applied normally to transport in the conductance of polyacetylene. It is shown that the magnitude and the incidence angle of the applied field have a considerable effect on the electron flow, hence constituting an interesting tool for current control in nanocircuits.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Current carrying nanostructure
dc.subject
multiscale simulation
dc.subject
time dependent tight binding
dc.subject
time dependent density functional theory
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Multiscale approach to electron transport dynamics
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-10-25T14:41:53Z
dc.journal.volume
151
dc.journal.number
8
dc.journal.pagination
1-12
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Bustamante, Carlos Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil
Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil
Fil: Sanchez, Cristian Gabriel. Universidad Nacional de Córdoba; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.description.fil
Fil: Scherlis, Damián A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.journal.title
Journal of Chemical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.5112372
Archivos asociados