Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Mobile apps for detecting falsified and substandard drugs: A systematic review

Ciapponi, AgustínIcon ; Donato, Manuel; Metin Gulmezoglu, A.; Alconada, Tomás; Bardach, Ariel EstebanIcon
Fecha de publicación: 02/2021
Editorial: Public Library of Science
Revista: Plos One
ISSN: 1932-6203
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Salud

Resumen

The use of substandard and counterfeit medicines (SCM) leads to significant health and economic consequences, like treatment failure, rise of antimicrobial resistance, extra expenditures of individuals or households and serious adverse drug reactions including death. Our objective was to systematically search, identify and compare relevant available mobile applications (apps) for smartphones and tablets, which use could potentially affect clinical and public health outcomes. We carried out a systematic review of the literature in January 2020, including major medical databases, and app stores. We used the validated Mobile App Rating Scale (MARS) to assess the quality of apps, (1 worst score, 3 acceptable score, and 5 best score). We planned to evaluate the accuracy of the mobile apps to detect SCM. We retrieved 335 references through medical databases and 42 from Apple, Google stores and Google Scholar. We finally included two studies of the medical database, 25 apps (eight from the App Store, eight from Google Play, eight from both stores, and one from Google Scholar), and 16 websites. We only found one report on the accuracy of a mobile apps detecting SCMs. Most apps use the imprint, color or shape for pill identification, and only a few offer pill detection through photographs or bar code. The MARS mean score for the apps was 3.17 (acceptable), with a maximum of 4.9 and a minimum of 1.1. The functionality dimension resulted in the highest mean score (3.4), while the engagement and information dimensions showed the lowest one (3.0). In conclusion, we found a remarkable evidence gap about the accuracy of mobile apps in detecting SCMs. However, mobile apps could potentially be useful to screen for SCM by assessing the physical characteristics of pills, although this should still be assessed in properly designed research studies.
Palabras clave: Mobile apps , Drugs , Substandard and counterfeit medicines (SCM) , Public health
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 833.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/175528
URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246061
DOI: http://dx.doi.org//10.1371/journal.pone.0246061
Colecciones
Articulos(CIESP)
Articulos de CENTRO DE INVESTIGACIONES EN EPIDEMIOLOGIA Y SALUD PUBLICA
Citación
Ciapponi, Agustín; Donato, Manuel; Metin Gulmezoglu, A.; Alconada, Tomás; Bardach, Ariel Esteban; Mobile apps for detecting falsified and substandard drugs: A systematic review; Public Library of Science; Plos One; 16; 2-2021; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES