Mostrar el registro sencillo del ítem
dc.contributor.author
Gómez, Julián Luis

dc.contributor.author
Velis, Danilo Ruben

dc.contributor.author
Sabbione, Juan Ignacio

dc.date.available
2022-10-28T20:27:51Z
dc.date.issued
2019-09
dc.identifier.citation
Gómez, Julián Luis; Velis, Danilo Ruben; Sabbione, Juan Ignacio; Noise suppression in 2D and 3D seismic data with data-driven sifting algorithms; Society of Exploration Geophysicists; Geophysics; 85; 1; 9-2019; 1-38
dc.identifier.issn
0016-8033
dc.identifier.uri
http://hdl.handle.net/11336/175478
dc.description.abstract
We have developed an empirical-mode decomposition (EMD) algorithm for effective suppression of random and coherent noise in 2D and 3D seismic amplitude data. Unlike other EMD-based methods for seismic data processing, our approach does not involve the time direction in the computation of the signal envelopes needed for the iterative sifting process. Instead, we apply the sifting algorithm spatially in the inline-crossline plane. At each time slice, we calculate the upper and lower signal envelopes by means of a filter whose length is adapted dynamically at each sifting iteration according to the spatial distribution of the extrema. The denoising of a 3D volume is achieved by removing the most oscillating modes of each time slice from the noisy data. We determine the performance of the algorithm by using three public-domain poststack field data sets: one 2D line of the well-known Alaska 2D data set, available from the US Geological Survey; a subset of the Penobscot 3D volume acquired offshore by the Nova Scotia Department of Energy, Canada; and a subset of the Stratton 3D land data from South Texas, available from the Bureau of Economic Geology at the University of Texas at Austin. The results indicate that random and coherent noise, such as footprint signatures, can be mitigated satisfactorily, enhancing the reflectors with negligible signal leakage in most cases. Our method, called empirical-mode filtering (EMF), yields improved results compared to other 2D and 3D techniques, such as f-x EMD filter, f-x deconvolution, and t-x-y adaptive prediction filtering. EMF exploits the flexibility of EMD on seismic data and is presented as an efficient and easy-to-apply alternative for denoising seismic data with mild to moderate structural complexity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Society of Exploration Geophysicists

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
algorithm
dc.subject
noise
dc.subject
signal processing
dc.subject
time-domain
dc.subject.classification
Geoquímica y Geofísica

dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Noise suppression in 2D and 3D seismic data with data-driven sifting algorithms
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-10-24T17:48:32Z
dc.journal.volume
85
dc.journal.number
1
dc.journal.pagination
1-38
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Tulsa
dc.description.fil
Fil: Gómez, Julián Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. YPF - Tecnología; Argentina
dc.description.fil
Fil: Velis, Danilo Ruben. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Sabbione, Juan Ignacio. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Geophysics

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://library.seg.org/doi/10.1190/geo2019-0099.1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1190/geo2019-0099.1
Archivos asociados