Artículo
Analysis of pyrene-labelled apolipoprotein A-I oligomerization in solution: Spectra deconvolution and changes in P-value and excimer formation
Tarraga, Wilson Alberto
; Falomir Lockhart, Lisandro Jorge
; Garda, Horacio Alberto
; Gonzalez, Marina Cecilia
Fecha de publicación:
03/2021
Editorial:
Elsevier Science Inc.
Revista:
Archives of Biochemistry and Biophysics
ISSN:
0003-9861
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
ApoA-I is the main protein of HDL which has anti-atherogenic properties attributed to reverse cholesterol transport. It shares with other exchangeable apolipoproteins a high level of structural plasticity. In the lipid-free state, the apolipoprotein amphipathic α-helices interact intra- and inter-molecularly, providing structural stabilization by a complex self-association mechanism. In this study, we employed a multi-parametric fluorescent probe to study the self-association of apoA-I. We constructed six single cysteine mutants spanning positions along three helices: F104C, K107C (H4), K133C, L137C (H5), F225C and K226C (H10); and labelled them with N-Maleimide Pyrene. Taking advantage of its spectral properties, namely formation of an excited dimer (excimer) and polarity-dependent changes in its fluorescence fine structure (P-value), we monitored the apoA-I self-association in its lipid-free form as a function of its concentration. Interactions in helices H5 (K133C) and H10 (F225C and K226C) were highlighted by excimer emission; while polarity changes were reported in helix H4 (K107C), as well as in helices H5 and H10. Mathematical models were developed to enrich data analysis and estimate association constants (KA) and oligomeric species distribution. Furthermore, we briefly discuss the usefulness of the multi-parametric fluorescent probe to monitor different equilibria, even at a single labelling position. Results suggest that apoA-I self-association must be considered to fully understand its physiological roles. Particularly, some contacts that stabilize discoidal HDL particles seem to be already present in the lipid-free apoA-I oligomers.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INIBIOLP)
Articulos de INST.DE INVEST.BIOQUIMICAS DE LA PLATA
Articulos de INST.DE INVEST.BIOQUIMICAS DE LA PLATA
Citación
Tarraga, Wilson Alberto; Falomir Lockhart, Lisandro Jorge; Garda, Horacio Alberto; Gonzalez, Marina Cecilia; Analysis of pyrene-labelled apolipoprotein A-I oligomerization in solution: Spectra deconvolution and changes in P-value and excimer formation; Elsevier Science Inc.; Archives of Biochemistry and Biophysics; 699; 108748; 3-2021; 1-9
Compartir
Altmétricas