Mostrar el registro sencillo del ítem

dc.contributor.author
Carando, Daniel Germán  
dc.contributor.author
Dimant, Veronica Isabel  
dc.contributor.author
Muro, Luis Santiago Miguel  
dc.date.available
2017-06-05T21:18:00Z  
dc.date.issued
2010-01  
dc.identifier.citation
Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Holomorphic functions and polynomial ideals on Banach spaces; Springer; Collectanea Mathematica; 73; 1; 1-2010; 71-91  
dc.identifier.issn
0010-0757  
dc.identifier.uri
http://hdl.handle.net/11336/17535  
dc.description.abstract
Given A a multiplicative sequence of polynomial ideals, we consider the associated algebra of holomorphic functions of bounded type, HbA(E). We prove that, under very natural conditions satisfied by many usual classes of polynomials, the spectrum MbA(E) of this algebra “behaves” like the classical case of Mb(E) (the spectrum of Hb(E), the algebra of bounded type holomorphic functions). More precisely, we prove that MbA(E) can be endowed with a structure of Riemann domain over E and that the extension of each f ∈ HbA(E) to the spectrum is an A-holomorphic function of bounded type in each connected component. We also prove a Banach-Stone type theorem for these algebras.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Polynomial Ideals  
dc.subject
Holomorphic Functions  
dc.subject
Riemann Domains Over Banach Spaces  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Holomorphic functions and polynomial ideals on Banach spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-11T20:58:06Z  
dc.identifier.eissn
2038-4815  
dc.journal.volume
73  
dc.journal.number
1  
dc.journal.pagination
71-91  
dc.journal.pais
Italia  
dc.journal.ciudad
Milán  
dc.description.fil
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Dimant, Veronica Isabel. Universidad de San Andres. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Collectanea Mathematica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13348-010-0025-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs13348-010-0025-5