Mostrar el registro sencillo del ítem
dc.contributor.author
Carando, Daniel Germán
dc.contributor.author
Dimant, Veronica Isabel
dc.contributor.author
Muro, Luis Santiago Miguel
dc.date.available
2017-06-05T21:18:00Z
dc.date.issued
2010-01
dc.identifier.citation
Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Holomorphic functions and polynomial ideals on Banach spaces; Springer; Collectanea Mathematica; 73; 1; 1-2010; 71-91
dc.identifier.issn
0010-0757
dc.identifier.uri
http://hdl.handle.net/11336/17535
dc.description.abstract
Given A a multiplicative sequence of polynomial ideals, we consider the associated algebra of holomorphic functions of bounded type, HbA(E). We prove that, under very natural conditions satisfied by many usual classes of polynomials, the spectrum MbA(E) of this algebra “behaves” like the classical case of Mb(E) (the spectrum of Hb(E), the algebra of bounded type holomorphic functions). More precisely, we prove that MbA(E) can be endowed with a structure of Riemann domain over E and that the extension of each f ∈ HbA(E) to the spectrum is an A-holomorphic function of bounded type in each connected component. We also prove a Banach-Stone type theorem for these algebras.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Polynomial Ideals
dc.subject
Holomorphic Functions
dc.subject
Riemann Domains Over Banach Spaces
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Holomorphic functions and polynomial ideals on Banach spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-05-11T20:58:06Z
dc.identifier.eissn
2038-4815
dc.journal.volume
73
dc.journal.number
1
dc.journal.pagination
71-91
dc.journal.pais
Italia
dc.journal.ciudad
Milán
dc.description.fil
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Dimant, Veronica Isabel. Universidad de San Andres. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Collectanea Mathematica
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13348-010-0025-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs13348-010-0025-5
Archivos asociados