Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Statistical estimation of the structural similarity index for image quality assessment

Osorio, Felipe; Vallejos, Ronny; Barraza, Wilson; Ojeda, Silvia María; Landi, Marcos AlejandroIcon
Fecha de publicación: 06/2022
Editorial: Springer London Ltd
Revista: Signal, Image and Video Processing
ISSN: 1863-1703
e-ISSN: 1863-1711
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

The structural similarity (SSIM) index has been studied from different perspectives in the last decade. Most of the developments consider its parameters fixed. Because each of these parameters corresponds to the weight of a factor in the final SSIM coefficient, the usual assumption that all parameters are equal to one is questionable. In this article, a new estimation method is proposed from a statistical perspective. The approach we develop is a model-based estimation method so that the usual assumption that all parameters are equal to one can be handled via approximate hypothesis-testing techniques that are properly developed in the context of regression. The method considers nonlinear models with multiplicative noise to explain the root mean square error as a function of the SSIM index. A numerical experiment based on a Monte Carlo simulation is carried out to test whether the parameters are all equal to one and to gain more insight into the performance of the estimates in practice. Our analysis showed that the assumption that the parameters are equal to one is not supported by the data and may lead to a misconception of the closeness between two images.
Palabras clave: HYPOTHESIS TESTING , NONLINEAR MODELS , PSEUDO-LIKELIHOOD , STRUCTURAL SIMILARITY INDEX
Ver el registro completo
 
Archivos asociados
Tamaño: 665.7Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/175228
URL: https://link.springer.com/article/10.1007/s11760-021-02051-9
DOI: http://dx.doi.org/10.1007/s11760-021-02051-9
Colecciones
Articulos(IDEA)
Articulos de INSTITUTO DE DIVERSIDAD Y ECOLOGIA ANIMAL
Citación
Osorio, Felipe; Vallejos, Ronny; Barraza, Wilson; Ojeda, Silvia María; Landi, Marcos Alejandro; Statistical estimation of the structural similarity index for image quality assessment; Springer London Ltd; Signal, Image and Video Processing; 16; 4; 6-2022; 1035-1042
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES