Artículo
Global bifurcation for fractional p-Laplacian and an application
Fecha de publicación:
04/2016
Editorial:
Heldermann Verlag
Revista:
Zeitschrift Fur Analysis Und Ihre Anwendungen
ISSN:
0232-2064
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove the existence of an unbounded branch of solutions to the nonlinear non-local equation (Equation presented) bifurcating from the first eigenvalue. Here (-Δ)s p denotes the fractional p-Laplacian and Ω ⊂ ℝ1 is a bounded regular domain. The proof of the bifurcation results relies in computing the Leray-Schauder degree by making an homotopy respect to s (the order of the fractional p-Laplacian) and then to use results of local case (that is s = 1) found in the paper of del Pino and Manasevich [J. Diff. Equ. 92(1991) (2), 226-251]. Finally, we give some application to an existence result.
Palabras clave:
Bifurcation
,
Existence Results
,
Fractional P-Laplacian
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
del Pezzo, Leandro Martin; Quaas, Alexander; Global bifurcation for fractional p-Laplacian and an application; Heldermann Verlag; Zeitschrift Fur Analysis Und Ihre Anwendungen; 35; 4; 4-2016; 411-447
Compartir
Altmétricas