Mostrar el registro sencillo del ítem
dc.contributor.author
García Tirado, José Fernando
dc.contributor.author
Colmegna, Patricio Hernán
dc.contributor.author
Corbett, John P.
dc.contributor.author
Ozaslan, Basak
dc.contributor.author
Breton, Marc D.
dc.date.available
2022-10-26T20:22:42Z
dc.date.issued
2019-11
dc.identifier.citation
García Tirado, José Fernando; Colmegna, Patricio Hernán; Corbett, John P.; Ozaslan, Basak; Breton, Marc D.; In silico analysis of an exercise-safe artificial pancreas with multistage model predictive control and insulin safety system; SAGE Publications; Journal of Diabetes Science and Technology; 13; 6; 11-2019; 1054-1064
dc.identifier.uri
http://hdl.handle.net/11336/175077
dc.description.abstract
Background: Maintaining glycemic equilibrium can be challenging for people living with type 1 diabetes (T1D) as many factors (eg, length, type, duration, insulin on board, stress, and training) will impact the metabolic changes triggered by physical activity potentially leading to both hypoglycemia and hyperglycemia. Therefore, and despite the noted health benefits, many individuals with T1D do not exercise as much as their healthy peers. While technology advances have improved glucose control during and immediately after exercise, it remains one of the key limitations of artificial pancreas (AP) systems, largely because stopping insulin at the onset of exercise may not be enough to prevent impending, exercise-induced hypoglycemia. Methods: A hybrid AP algorithm with subject-specific exercise behavior recognition and anticipatory action is designed to prevent hypoglycemic events during and after moderate-intensity exercise. Our approach relies on a number of key innovations, namely, an activity informed premeal bolus calculator, personalized exercise pattern recognition, and a multistage model predictive control (MS-MPC) strategy that can transition between reactive and anticipatory modes. This AP design was evaluated on 100 in silico subjects from the most up-to-date FDA-accepted UVA/Padova metabolic simulator, emulating an outpatient clinical trial setting. Results with a baseline controller, a regular MPC (rMPC), are also included for comparison purposes. Results: In silico experiments reveal that the proposed MS-MPC strategy markedly reduces the number of exercise-related hypoglycemic events (8 vs 68). Conclusion: An anticipatory mode for insulin administration of a monohormonal AP controller reduces the occurrence of hypoglycemia during moderate-intensity exercise.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
SAGE Publications
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL PANCREAS
dc.subject
MODEL PREDICTIVE CONTROL
dc.subject
MODERATE-INTENSITY EXERCISE
dc.subject
TYPE 1 DIABETES
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
In silico analysis of an exercise-safe artificial pancreas with multistage model predictive control and insulin safety system
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-10-26T10:44:40Z
dc.identifier.eissn
1932-2968
dc.journal.volume
13
dc.journal.number
6
dc.journal.pagination
1054-1064
dc.journal.pais
Estados Unidos
dc.journal.ciudad
California
dc.description.fil
Fil: García Tirado, José Fernando. University of Virginia; Estados Unidos
dc.description.fil
Fil: Colmegna, Patricio Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Virginia; Estados Unidos
dc.description.fil
Fil: Corbett, John P.. University of Virginia; Estados Unidos
dc.description.fil
Fil: Ozaslan, Basak. University of Virginia; Estados Unidos
dc.description.fil
Fil: Breton, Marc D.. University of Virginia; Estados Unidos
dc.journal.title
Journal of Diabetes Science and Technology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1177/1932296819879084
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1177/1932296819879084
Archivos asociados