Mostrar el registro sencillo del ítem

dc.contributor.author
García Tirado, José Fernando  
dc.contributor.author
Colmegna, Patricio Hernán  
dc.contributor.author
Corbett, John P.  
dc.contributor.author
Ozaslan, Basak  
dc.contributor.author
Breton, Marc D.  
dc.date.available
2022-10-26T20:22:42Z  
dc.date.issued
2019-11  
dc.identifier.citation
García Tirado, José Fernando; Colmegna, Patricio Hernán; Corbett, John P.; Ozaslan, Basak; Breton, Marc D.; In silico analysis of an exercise-safe artificial pancreas with multistage model predictive control and insulin safety system; SAGE Publications; Journal of Diabetes Science and Technology; 13; 6; 11-2019; 1054-1064  
dc.identifier.uri
http://hdl.handle.net/11336/175077  
dc.description.abstract
Background: Maintaining glycemic equilibrium can be challenging for people living with type 1 diabetes (T1D) as many factors (eg, length, type, duration, insulin on board, stress, and training) will impact the metabolic changes triggered by physical activity potentially leading to both hypoglycemia and hyperglycemia. Therefore, and despite the noted health benefits, many individuals with T1D do not exercise as much as their healthy peers. While technology advances have improved glucose control during and immediately after exercise, it remains one of the key limitations of artificial pancreas (AP) systems, largely because stopping insulin at the onset of exercise may not be enough to prevent impending, exercise-induced hypoglycemia. Methods: A hybrid AP algorithm with subject-specific exercise behavior recognition and anticipatory action is designed to prevent hypoglycemic events during and after moderate-intensity exercise. Our approach relies on a number of key innovations, namely, an activity informed premeal bolus calculator, personalized exercise pattern recognition, and a multistage model predictive control (MS-MPC) strategy that can transition between reactive and anticipatory modes. This AP design was evaluated on 100 in silico subjects from the most up-to-date FDA-accepted UVA/Padova metabolic simulator, emulating an outpatient clinical trial setting. Results with a baseline controller, a regular MPC (rMPC), are also included for comparison purposes. Results: In silico experiments reveal that the proposed MS-MPC strategy markedly reduces the number of exercise-related hypoglycemic events (8 vs 68). Conclusion: An anticipatory mode for insulin administration of a monohormonal AP controller reduces the occurrence of hypoglycemia during moderate-intensity exercise.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
SAGE Publications  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL PANCREAS  
dc.subject
MODEL PREDICTIVE CONTROL  
dc.subject
MODERATE-INTENSITY EXERCISE  
dc.subject
TYPE 1 DIABETES  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
In silico analysis of an exercise-safe artificial pancreas with multistage model predictive control and insulin safety system  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-26T10:44:40Z  
dc.identifier.eissn
1932-2968  
dc.journal.volume
13  
dc.journal.number
6  
dc.journal.pagination
1054-1064  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
California  
dc.description.fil
Fil: García Tirado, José Fernando. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Colmegna, Patricio Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Corbett, John P.. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Ozaslan, Basak. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Breton, Marc D.. University of Virginia; Estados Unidos  
dc.journal.title
Journal of Diabetes Science and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1177/1932296819879084  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1177/1932296819879084