Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Evaluation of two recurrent neural network methods for prediction of irrigation rate and timing

Jiménez, Andrés F.; Ortiz, Brenda V.; Bondesan, Luca; Morata, Guilherme; Damianidis, DamianosIcon
Fecha de publicación: 06/2020
Editorial: American Society of Agricultural and Biological Engineers
Revista: Transactions of the ASABE
ISSN: 2151-0032
e-ISSN: 2151-0040
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

The implementation of adequate irrigation strategies could be done through real-time monitoring of soil water status at several soil depths; however, this could also represent a complex nonlinear problem due to the plant-soil-weather relationships. In this study, two recurrent neural network (RNN) models were evaluated to estimate irrigation prescriptions. Data for this study were collected from an on-farm corn irrigation study conducted between 2017 and 2019 in Samson, Alabama. The study used hourly data of weather and soil matric potential (SMP) monitored at three soil depths from 13 sensor probes installed on a loamy fine sand soil and a sandy clay loam soil. Two neural network methods, i.e., a nonlinear autoregressive with exogenous (NARX) input system and long short-term memory (LSTM), were trained, validated, and tested with a maximum dataset of 20,052 records and a maximum of eight categorical attributes to estimate one-step irrigation prescriptions. The performance of both methods was evaluated by varying the model development parameters (neurons or blocks, dropout, and epochs) and determining their impact on the final model prediction. Results showed that both RNN models demonstrated good capability in the prediction of irrigation prescriptions for the soil types studied, with a coefficient of determination (R2) > 0.94 and root mean square error (RMSE) < 1.2 mm. The results of this study indicate that after training the RNNs using the dataset collected in the field, models using only SMP sensors at three soil depths obtained the best performance, followed by models that used only data of solar radiation, temperature, and relative humidity in the prediction of irrigation prescriptions. For future applicability, the RNN models can be extended using datasets from other places for training, which would allow the adoption of a unique data-driven soil moisture model for irrigation scheduling useful in a wide range of soil types.
Palabras clave: CORN , IRRIGATION SCHEDULING , MACHINE LEARNING , MODELING , SOIL MATRIC POTENTIAL SENSOR
Ver el registro completo
 
Archivos asociados
Tamaño: 6.327Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/174695
DOI: http://dx.doi.org/10.13031/TRANS.13765
URL: https://elibrary.asabe.org/abstract.asp?AID=51763&t=3&dabs=Y&redir=&redirType=
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Jiménez, Andrés F.; Ortiz, Brenda V.; Bondesan, Luca; Morata, Guilherme; Damianidis, Damianos; Evaluation of two recurrent neural network methods for prediction of irrigation rate and timing; American Society of Agricultural and Biological Engineers; Transactions of the ASABE; 63; 5; 6-2020; 1327-1348
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES