Mostrar el registro sencillo del ítem

dc.contributor.author
Gramajo, María Guadalupe  
dc.contributor.author
Ballejos, Luciana Cristina  
dc.contributor.author
Ale, Mariel Alejandra  
dc.date.available
2022-10-24T15:59:49Z  
dc.date.issued
2020-07  
dc.identifier.citation
Gramajo, María Guadalupe; Ballejos, Luciana Cristina; Ale, Mariel Alejandra; Seizing Requirements Engineering Issues through Supervised Learning Techniques; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 18; 7; 7-2020; 1164-1184  
dc.identifier.uri
http://hdl.handle.net/11336/174596  
dc.description.abstract
In recent years, the popularity of machine learning techniques has grown due to the availability of larges volumes of data and the increased processing capacity of computers. Despite the inherent value of these techniques, few studies have attempted to summarize how machine learning algorithms, especially supervised learning have contributed to task automation and resolving challenges in Requirements Engineering. This paper proposes a systematic mapping of the literature to identify and analyze proposals which employ supervised learning in Requirements Engineering between 2002-2018. The goal of this research is to identify trends, datasets, and methods used. Thirty-three studies were selected based on defined inclusion and exclusion criteria. The results show that researches using these techniques focuses on eight broad categories: detection of linguistic problems in requirements documents and artifacts written in natural language, classification of document content, traceability, effort estimation, requirements analysis, failures prediction, quality and detection of business rules. The most used supervised learning algorithms were Support Vector Machine, Naive Bayes, Decision Tree, K-Nearest Neighbour, and Random Forest. Twenty-five public and twenty -eight private data sources were identified. Among the most used public data sources are Predictor Models in Software Engineering, iTrust Electronic Health Care System and Metric Data Program from NASA.  
dc.format
application/pdf  
dc.language.iso
spa  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MACHINE LEARNING  
dc.subject
REQUIREMENT ENGINEERING  
dc.subject
SOFTWARE REQUIREMENT  
dc.subject
SUPERVISED LEARNING  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Seizing Requirements Engineering Issues through Supervised Learning Techniques  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-22T15:20:57Z  
dc.identifier.eissn
1548-0992  
dc.journal.volume
18  
dc.journal.number
7  
dc.journal.pagination
1164-1184  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva Jersey  
dc.description.fil
Fil: Gramajo, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina  
dc.description.fil
Fil: Ballejos, Luciana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina  
dc.description.fil
Fil: Ale, Mariel Alejandra. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina  
dc.journal.title
IEEE Latin America Transactions  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9099757  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TLA.2020.9099757