Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Long short-term memory neural network for irrigation management: a case study from Southern Alabama, USA

Jimenez, Andres F.; Ortiz, Brenda V.; Bondesan, Luca; Morata, Guilherme; Damianidis, DamianosIcon
Fecha de publicación: 09/2020
Editorial: Springer
Revista: Precision Agriculture
ISSN: 1385-2256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

The metabolism and growth of vegetation are highly dependent on the changes in soil water content. Irrigation scheduling and application of water at the right time and rate are a key aspect for precision irrigation. In this study, the Long Short-Term Memory (LSTM) Neural Network model was studied to predict irrigation prescriptions for 1, 3, 6, 12 and 24 h in advance. Training data for LSTM were collected from a precision irrigation study conducted in Alabama, USA. The prediction estimation of irrigation prescription used soil matric potential data measured within two contrasting soil types. Performance of the LSTM models were evaluated by comparing neural network parameters and prediction capability by soil type. The optimal learning algorithm for each case was also determined. The LSTM Neural Network showed good prediction capabilities for both soil types, with R2 ranging between 0.82 and 0.98 for one hour ahead prescription and getting smaller as prediction time increases. The irrigation rate prediction was verified by actual observations that demonstrate the suitability of the machine learning technique as a decision-support tool for irrigation scheduling.
Palabras clave: CORN , IRRIGATION PRESCRIPTION , LONG-SHORT TERM MEMORY NEURAL NETWORK , PRECISION IRRIGATION , SOIL MATRIC POTENTIAL
Ver el registro completo
 
Archivos asociados
Tamaño: 3.139Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/174589
URL: https://link.springer.com/article/10.1007/s11119-020-09753-z
DOI: http://dx.doi.org/10.1007/s11119-020-09753-z
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Jimenez, Andres F.; Ortiz, Brenda V.; Bondesan, Luca; Morata, Guilherme; Damianidis, Damianos; Long short-term memory neural network for irrigation management: a case study from Southern Alabama, USA; Springer; Precision Agriculture; 22; 2; 9-2020; 475-492
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES