Mostrar el registro sencillo del ítem
dc.contributor.author
Soleimani, Shokoufeh
dc.contributor.author
Arkan, Elham
dc.contributor.author
Farshadnia, Tooraj
dc.contributor.author
Mahnam, Zahra
dc.contributor.author
Jalili, Faramarz
dc.contributor.author
Goicoechea, Hector Casimiro
dc.contributor.author
Jalalvand, Ali R.
dc.date.available
2022-10-21T19:19:58Z
dc.date.issued
2020-08
dc.identifier.citation
Soleimani, Shokoufeh; Arkan, Elham; Farshadnia, Tooraj; Mahnam, Zahra; Jalili, Faramarz; et al.; The first attempt on fabrication of a nano-biosensing platform and exploiting first-order advantage from impedimetric data: application to simultaneous biosensing of doxorubicin, daunorubicin and idarubicin; Elsevier; Sensing and Bio-Sensing Research; 29; 8-2020; 1-8
dc.identifier.issn
2214-1804
dc.identifier.uri
http://hdl.handle.net/11336/174437
dc.description.abstract
In this work, for the first time, we have developed a novel and very interesting electroanalytical methodology assisted by first-order multivariate calibration (MVC) for simultaneous determination of doxorubicin (DX), daunorubicin (DN) and idarubicin (ID) as three chemotherapeutic drugs at simulated physiological conditions. A sever overlapping was observed among signals of the three drugs which hindered us for simultaneous determination of them by conventional electroanalytical techniques. Therefore, we had to assist our method by chemometric approaches to develop a novel method for simultaneous determination of DX, DN and ID. Among the existing electroanalytical methods, electrochemical impedance spectroscopy (EIS) due to its high sensitivity was chosen. After individual calibration of the three drugs with the EIS data, a set of calibration samples was designed which was used to develop several first-order MVC models by partial least squares (PLS), continuum power regression (CPR), radial basis function-partial least squares (RBF-PLS), RBF-artificial neural network (RBF-ANN) and least squares-support vector machines (LS-SVM) as linear and non-linear chemometric algorithms. Then, performance of the developed MVC models in predicting concentrations of DX, DN and ID in synthetic samples was compared to choose the best model for the analysis of real samples. Our records confirmed more superiority of RBF-PLS algorithm than the other developed models which motivated us to choose it for the analysis of real samples. Fortunately, the results of the RBF-PLS in the analysis of real samples towards simultaneous determination DX, DN and ID was acceptable.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
DAUNORUBICIN
dc.subject
DOXORUBICIN
dc.subject
IDARUBICIN
dc.subject
IMPEDIMETRY
dc.subject
MULTIVARIATE CALIBRATION
dc.subject
SIMULTANEOUS DETERMINATION
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The first attempt on fabrication of a nano-biosensing platform and exploiting first-order advantage from impedimetric data: application to simultaneous biosensing of doxorubicin, daunorubicin and idarubicin
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-22T15:09:48Z
dc.journal.volume
29
dc.journal.pagination
1-8
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Soleimani, Shokoufeh. Kermanshah University Of Medical Sciences; Irán
dc.description.fil
Fil: Arkan, Elham. Kermanshah University Of Medical Sciences; Irán
dc.description.fil
Fil: Farshadnia, Tooraj. Kermanshah University Of Medical Sciences; Irán
dc.description.fil
Fil: Mahnam, Zahra. Kermanshah University Of Medical Sciences; Irán
dc.description.fil
Fil: Jalili, Faramarz. Kermanshah University Of Medical Sciences; Irán
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina
dc.description.fil
Fil: Jalalvand, Ali R.. Kermanshah University Of Medical Sciences; Irán
dc.journal.title
Sensing and Bio-Sensing Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2214180420301276
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.sbsr.2020.100366
Archivos asociados