Mostrar el registro sencillo del ítem
dc.contributor.author
Voyiadjis, George Z.
dc.contributor.author
Saffarini, Mohammed H.
dc.contributor.author
Ruestes, Carlos Javier
dc.date.available
2022-10-18T18:44:56Z
dc.date.issued
2021-06
dc.identifier.citation
Voyiadjis, George Z.; Saffarini, Mohammed H.; Ruestes, Carlos Javier; Characterization of the strain rate effect under uniaxial loading for nanoporous gold; Elsevier; Computational Materials Science; 194; 6-2021; 1-17
dc.identifier.issn
0927-0256
dc.identifier.uri
http://hdl.handle.net/11336/173838
dc.description.abstract
While several studies assessed the behavior of nanoporous gold (NP-Au) under different loading conditions for various material characteristics and loading scenarios, very limited attention was given to the effect of strain rate on material response. In this study, the effect of strain rate is investigated by performing novel atomistic simulations on NP-Au under uniaxial loading up to large compressive and tensile strains (60% strain) for strain rates in the range of 106/s and 109/s. This paper explores the material response under uniaxial loading and proposes a size, relative density, and strain rate dependent dislocation based constitutive model that describes the plastic flow in NP-Au. In addition, modified Gibson and Ashby (G-A) scaling relations that capture the effect of strain rate are proposed to predict the elastic modulus, yield stress and ultimate stress. The simulation results show that the elastic modulus is strain rate independent similar to that of bulk materials. Additionally, the yield stress and its compression-tension asymmetry are strain rate dependent. Under compression, strain hardening is found to be strain rate dependent, and it is controlled by the amount of dislocation density for strain rates below 108/s; whereas, it is controlled by the coupling effect of dislocation density and dislocation mobility for higher strain rates. Under tension, the material shows higher ductility and softening with increasing strain rate. Also, the material deformation and failing mechanisms change at strain rates exceeding 108/s due to the transition in dislocation activity within the ligaments.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONSTITUTIVE MODELING
dc.subject
DISLOCATION EVOLUTION
dc.subject
SCALING LAWS
dc.subject
STRAIN HARDENING
dc.subject
STRAIN RATE
dc.subject
TENSILE DUCTILITY
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Characterization of the strain rate effect under uniaxial loading for nanoporous gold
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-10-13T16:43:15Z
dc.journal.volume
194
dc.journal.pagination
1-17
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Voyiadjis, George Z.. State University of Louisiana; Estados Unidos
dc.description.fil
Fil: Saffarini, Mohammed H.. State University of Louisiana; Estados Unidos
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
dc.journal.title
Computational Materials Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025621001506
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2021.110425
Archivos asociados