Mostrar el registro sencillo del ítem

dc.contributor.author
Voyiadjis, George Z.  
dc.contributor.author
Saffarini, Mohammed H.  
dc.contributor.author
Ruestes, Carlos Javier  
dc.date.available
2022-10-18T18:44:56Z  
dc.date.issued
2021-06  
dc.identifier.citation
Voyiadjis, George Z.; Saffarini, Mohammed H.; Ruestes, Carlos Javier; Characterization of the strain rate effect under uniaxial loading for nanoporous gold; Elsevier; Computational Materials Science; 194; 6-2021; 1-17  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/173838  
dc.description.abstract
While several studies assessed the behavior of nanoporous gold (NP-Au) under different loading conditions for various material characteristics and loading scenarios, very limited attention was given to the effect of strain rate on material response. In this study, the effect of strain rate is investigated by performing novel atomistic simulations on NP-Au under uniaxial loading up to large compressive and tensile strains (60% strain) for strain rates in the range of 106/s and 109/s. This paper explores the material response under uniaxial loading and proposes a size, relative density, and strain rate dependent dislocation based constitutive model that describes the plastic flow in NP-Au. In addition, modified Gibson and Ashby (G-A) scaling relations that capture the effect of strain rate are proposed to predict the elastic modulus, yield stress and ultimate stress. The simulation results show that the elastic modulus is strain rate independent similar to that of bulk materials. Additionally, the yield stress and its compression-tension asymmetry are strain rate dependent. Under compression, strain hardening is found to be strain rate dependent, and it is controlled by the amount of dislocation density for strain rates below 108/s; whereas, it is controlled by the coupling effect of dislocation density and dislocation mobility for higher strain rates. Under tension, the material shows higher ductility and softening with increasing strain rate. Also, the material deformation and failing mechanisms change at strain rates exceeding 108/s due to the transition in dislocation activity within the ligaments.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONSTITUTIVE MODELING  
dc.subject
DISLOCATION EVOLUTION  
dc.subject
SCALING LAWS  
dc.subject
STRAIN HARDENING  
dc.subject
STRAIN RATE  
dc.subject
TENSILE DUCTILITY  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Characterization of the strain rate effect under uniaxial loading for nanoporous gold  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-13T16:43:15Z  
dc.journal.volume
194  
dc.journal.pagination
1-17  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Voyiadjis, George Z.. State University of Louisiana; Estados Unidos  
dc.description.fil
Fil: Saffarini, Mohammed H.. State University of Louisiana; Estados Unidos  
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025621001506  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2021.110425