Mostrar el registro sencillo del ítem

dc.contributor.author
Cura Costa, Emanuel  
dc.contributor.author
Otsuki, Leo  
dc.contributor.author
Albors, Aida Rodrigo  
dc.contributor.author
Tanaka, Elly M.  
dc.contributor.author
Chara, Osvaldo  
dc.date.available
2022-10-18T14:16:50Z  
dc.date.issued
2021-05  
dc.identifier.citation
Cura Costa, Emanuel; Otsuki, Leo; Albors, Aida Rodrigo; Tanaka, Elly M.; Chara, Osvaldo; Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration; eLife Sciences Publications; eLife; 10; 5-2021; 1-29  
dc.identifier.issn
2050-084X  
dc.identifier.uri
http://hdl.handle.net/11336/173798  
dc.description.abstract
Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
eLife Sciences Publications  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
REGENERATION  
dc.subject
AXOLOTL  
dc.subject
SPINAL CORD  
dc.subject
MATHEMATICAL MODEL  
dc.subject.classification
Biofísica  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-29T13:49:47Z  
dc.journal.volume
10  
dc.journal.pagination
1-29  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Cura Costa, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.description.fil
Fil: Otsuki, Leo. Research Institute Of Molecular Pathology; Austria  
dc.description.fil
Fil: Albors, Aida Rodrigo. University Of Dundee; Reino Unido  
dc.description.fil
Fil: Tanaka, Elly M.. Research Institute Of Molecular Pathology; Austria  
dc.description.fil
Fil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.journal.title
eLife  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7554/eLife.55665  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/55665