Artículo
Noisy multistate voter model for flocking in finite dimensions
Fecha de publicación:
09/2021
Editorial:
American Physical Society
Revista:
Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN:
1539-3755
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study a model for the collective behavior of self-propelled particles subject to pairwise copying interactions and noise. Particles move at a constant speed v on a two-dimensional space and, in a single step of the dynamics, each particle adopts the direction of motion of a randomly chosen neighboring particle within a distance R=1, with the addition of a perturbation of amplitude eta (noise). We investigate how the global level of particles' alignment (order) is affected by their motion and the noise amplitude eta. In the static case scenario v=0 where particles are fixed at the sites of a square lattice and interact with their first neighbors, we find that for any noise eta > 0 the system reaches a steady state of complete disorder in the thermodynamic limit, while for eta=0 full order is eventually achieved for a system with any number of particles N. Therefore, the model displays a transition at zero noise when particles are static, and thus there are no ordered steady states for a finite noise ( eta>0). We show that the finite-size transition noise vanishes with Nas eta_c^(1D)~ N^-1 and eta_c^(2D)~ (N lnN)^-1/2 in one- and two-dimensional lattices, respectively, which is linked to known results on the behavior of a type of noisy voter model for catalytic reactions. When particles are allowed to move in the space at a finite speed v>0, an ordered phase emerges, characterized by a fraction of particles moving in a similar direction. The system exhibits an order-disorder phase transition at a noise amplitude eta_c >0 that is proportional to v, and that scales approximately as eta_c ~ v(-lnv)^-1/2 for v<<1. These results show that the motion of particles is able to sustain a state of global order in a system with voter-like interactions.
Palabras clave:
Irreversible Phase Transitions
,
Self-propelled particles
,
Social systems
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Loscar, Ernesto Selim; Baglietto, Gabriel; Vazquez, Federico; Noisy multistate voter model for flocking in finite dimensions; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 104; 3; 9-2021; 1-23
Compartir
Altmétricas