Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Noisy multistate voter model for flocking in finite dimensions

Loscar, Ernesto SelimIcon ; Baglietto, GabrielIcon ; Vazquez, FedericoIcon
Fecha de publicación: 09/2021
Editorial: American Physical Society
Revista: Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN: 1539-3755
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

We study a model for the collective behavior of self-propelled particles subject to pairwise copying interactions and noise. Particles move at a constant speed v on a two-dimensional space and, in a single step of the dynamics, each particle adopts the direction of motion of a randomly chosen neighboring particle within a distance R=1, with the addition of a perturbation of amplitude eta (noise). We investigate how the global level of particles' alignment (order) is affected by their motion and the noise amplitude eta. In the static case scenario v=0 where particles are fixed at the sites of a square lattice and interact with their first neighbors, we find that for any noise eta > 0 the system reaches a steady state of complete disorder in the thermodynamic limit, while for eta=0 full order is eventually achieved for a system with any number of particles N. Therefore, the model displays a transition at zero noise when particles are static, and thus there are no ordered steady states for a finite noise ( eta>0). We show that the finite-size transition noise vanishes with Nas eta_c^(1D)~ N^-1 and eta_c^(2D)~ (N lnN)^-1/2 in one- and two-dimensional lattices, respectively, which is linked to known results on the behavior of a type of noisy voter model for catalytic reactions. When particles are allowed to move in the space at a finite speed v>0, an ordered phase emerges, characterized by a fraction of particles moving in a similar direction. The system exhibits an order-disorder phase transition at a noise amplitude eta_c >0 that is proportional to v, and that scales approximately as eta_c ~ v(-lnv)^-1/2 for v<<1. These results show that the motion of particles is able to sustain a state of global order in a system with voter-like interactions.
Palabras clave: Irreversible Phase Transitions , Self-propelled particles , Social systems
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 378.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/173773
DOI: https://doi.org/10.1103/PhysRevE.104.034111
URL: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.104.034111
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Loscar, Ernesto Selim; Baglietto, Gabriel; Vazquez, Federico; Noisy multistate voter model for flocking in finite dimensions; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 104; 3; 9-2021; 1-23
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES