Mostrar el registro sencillo del ítem

dc.contributor.author
Yang, Sha  
dc.contributor.author
Ukrainczyk, Neven  
dc.contributor.author
Caggiano, Antonio  
dc.contributor.author
Koenders, Eddie  
dc.date.available
2022-10-18T10:14:07Z  
dc.date.issued
2021-03  
dc.identifier.citation
Yang, Sha; Ukrainczyk, Neven; Caggiano, Antonio; Koenders, Eddie; Numerical phase-field model validation for dissolution of minerals; MDPI AG; Applied Sciences; 11; 6; 3-2021; 1-22  
dc.identifier.issn
2076-3417  
dc.identifier.uri
http://hdl.handle.net/11336/173661  
dc.description.abstract
Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI AG  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
DIFFUSIVE TRANSPORT  
dc.subject
MINERAL DISSOLUTION  
dc.subject
MOVING BOUNDARY PROBLEM  
dc.subject
NUMERICAL SIMULATION  
dc.subject
PHASE-FIELD (PF) METHOD  
dc.subject
REACTION RATE  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Numerical phase-field model validation for dissolution of minerals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-21T23:59:40Z  
dc.journal.volume
11  
dc.journal.number
6  
dc.journal.pagination
1-22  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Yang, Sha. Universitat Technische Darmstadt; Alemania  
dc.description.fil
Fil: Ukrainczyk, Neven. Universitat Technische Darmstadt; Alemania  
dc.description.fil
Fil: Caggiano, Antonio. Universitat Technische Darmstadt; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina  
dc.description.fil
Fil: Koenders, Eddie. Universitat Technische Darmstadt; Alemania  
dc.journal.title
Applied Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/app11062464