Mostrar el registro sencillo del ítem
dc.contributor.author
Yang, Sha
dc.contributor.author
Ukrainczyk, Neven
dc.contributor.author
Caggiano, Antonio
dc.contributor.author
Koenders, Eddie
dc.date.available
2022-10-18T10:14:07Z
dc.date.issued
2021-03
dc.identifier.citation
Yang, Sha; Ukrainczyk, Neven; Caggiano, Antonio; Koenders, Eddie; Numerical phase-field model validation for dissolution of minerals; MDPI AG; Applied Sciences; 11; 6; 3-2021; 1-22
dc.identifier.issn
2076-3417
dc.identifier.uri
http://hdl.handle.net/11336/173661
dc.description.abstract
Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI AG
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
DIFFUSIVE TRANSPORT
dc.subject
MINERAL DISSOLUTION
dc.subject
MOVING BOUNDARY PROBLEM
dc.subject
NUMERICAL SIMULATION
dc.subject
PHASE-FIELD (PF) METHOD
dc.subject
REACTION RATE
dc.subject.classification
Ingeniería Civil
dc.subject.classification
Ingeniería Civil
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Numerical phase-field model validation for dissolution of minerals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-21T23:59:40Z
dc.journal.volume
11
dc.journal.number
6
dc.journal.pagination
1-22
dc.journal.pais
Suiza
dc.description.fil
Fil: Yang, Sha. Universitat Technische Darmstadt; Alemania
dc.description.fil
Fil: Ukrainczyk, Neven. Universitat Technische Darmstadt; Alemania
dc.description.fil
Fil: Caggiano, Antonio. Universitat Technische Darmstadt; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
dc.description.fil
Fil: Koenders, Eddie. Universitat Technische Darmstadt; Alemania
dc.journal.title
Applied Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/app11062464
Archivos asociados