Mostrar el registro sencillo del ítem

dc.contributor.author
Fort, Hugo  
dc.contributor.author
Grigera, Tomas Sebastian  
dc.date.available
2022-10-17T17:44:39Z  
dc.date.issued
2021-04  
dc.identifier.citation
Fort, Hugo; Grigera, Tomas Sebastian; A method for predicting species trajectories tested with trees in barro colorado tropical forest; Elsevier Science; Ecological Modelling; 446; 109504; 4-2021; 1-9  
dc.identifier.issn
0304-3800  
dc.identifier.uri
http://hdl.handle.net/11336/173580  
dc.description.abstract
The ability to predict changes in the abundances of the species in ecological communities is essential for sustainable management, biodiversity conservation, and community restoration. We propose a framework to predict such changes. We test our method, which uses the linear Lotka-Volterra equations (LLVE) as well as other empirical predictors (linear least squares regression, quadratic extrapolation, simple exponential smoothing), against the measured abundances of trees from the long-term 50-ha plot on Barro Colorado Island (BCI), along eight censuses. To obtain the parameters of the LLVE -the intrinsic growth rate r and the carrying capacity K of each species and the interspecific interaction matrix A- we first estimate A through the Maximum Entropy (MaxEnt) method. Next, using A as input, we fit r and K. Then, feeding the LLVE with these parameters, we obtain predicted species trajectories along censuses. Since for this particular community the interspecific interaction coefficients are much smaller than the intraspecific ones, keeping only intraspecific competition is enough to predict the evolution of the abundances of several tree species, i.e. the LLVE reduce to a set of uncoupled logistic equations. However, this simplification is not a requirement of the method. We define P-values to establish when the predicted trajectory for a species is statistically significant; this is crucial in determining the set of species over which a particular predictor can be meaningfully applied. To illustrate a possible application of the method, we present our predictions for the abundances of tree species for the currently underway BCI 2020 census, which provide warnings regarding species that are likely to experience important population loss.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
PREDICTION OF CHANGES IN SPECIES ABUNDANCES  
dc.subject
QUANTITATIVE COMMUNITY ECOLOGY  
dc.subject
TIME SERIES FORECASTING  
dc.subject
TROPICAL FOREST DYNAMICS  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A method for predicting species trajectories tested with trees in barro colorado tropical forest  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-29T13:50:46Z  
dc.journal.volume
446  
dc.journal.number
109504  
dc.journal.pagination
1-9  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Fort, Hugo. Instituto de Física; Uruguay  
dc.description.fil
Fil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.journal.title
Ecological Modelling  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304380021000752  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecolmodel.2021.109504