Mostrar el registro sencillo del ítem

dc.contributor.author
Gianni, Stefano  
dc.contributor.author
Freiberger, Maria Ines  
dc.contributor.author
Jemth, Per  
dc.contributor.author
Ferreiro, Diego  
dc.contributor.author
Wolynes, Peter G.  
dc.contributor.author
Fuxreiter, Monika  
dc.date.available
2022-10-17T17:00:26Z  
dc.date.issued
2021-03  
dc.identifier.citation
Gianni, Stefano; Freiberger, Maria Ines; Jemth, Per; Ferreiro, Diego; Wolynes, Peter G.; et al.; Fuzziness and Frustration in the Energy Landscape of Protein Folding, Function, and Assembly; American Chemical Society; Accounts of Chemical Research; 54; 5; 3-2021; 1251-1259  
dc.identifier.issn
0001-4842  
dc.identifier.uri
http://hdl.handle.net/11336/173568  
dc.description.abstract
Are all protein interactions fully optimized? Do suboptimal interactions compromise specificity? What is the functional impact of frustration? Why does evolution not optimize some contacts? Proteins and their complexes are best described as ensembles of states populating an energy landscape. These ensembles vary in breadth from narrow ensembles clustered around a single average X-ray structure to broader ensembles encompassing a few different functional “taxonomic” states on to near continua of rapidly interconverting conformations, which are called “fuzzy” or even “intrinsically disordered”. Here we aim to provide a comprehensive framework for confronting the structural and dynamical continuum of protein assemblies by combining the concepts of energetic frustration and interaction fuzziness. The diversity of the protein structural ensemble arises from the frustrated conflicts between the interactions that create the energy landscape. When frustration is minimal after folding, it results in a narrow ensemble, but residual frustrated interactions result in fuzzy ensembles, and this fuzziness allows a versatile repertoire of biological interactions. Here we discuss how fuzziness and frustration play off each other as proteins fold and assemble, viewing their significance from energetic, functional, and evolutionary perspectives. We demonstrate, in particular, that the common physical origin of both concepts is related to the ruggedness of the energy landscapes, intramolecular in the case of frustration and intermolecular in the case of fuzziness. Within this framework, we show that alternative sets of suboptimal contacts may encode specificity without achieving a single structural optimum. Thus, we demonstrate that structured complexes may not be optimized, and energetic frustration is realized via different sets of contacts leading to multiplicity of specific complexes. Furthermore, we propose that these suboptimal, frustrated, or fuzzy interactions are under evolutionary selection and expand the biological repertoire by providing a multiplicity of biological activities. In accord, we show that non-native interactions in folding or interaction landscapes can cooperate to generate diverse functional states, which are essential to facilitate adaptation to different cellular conditions. Thus, we propose that not fully optimized structures may actually be beneficial for biological activities of proteins via an alternative set of suboptimal interactions. The importance of such variability has not been recognized across different areas of biology. This account provides a modern view on folding, function, and assembly across the protein universe. The physical framework presented here is applicable to the structure and dynamics continuum of proteins and opens up new perspectives for drug design involving not fully structured, highly dynamic protein assemblies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
fuzzines  
dc.subject
frustration  
dc.subject
assembly  
dc.subject.classification
Biofísica  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Fuzziness and Frustration in the Energy Landscape of Protein Folding, Function, and Assembly  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-22T00:28:58Z  
dc.journal.volume
54  
dc.journal.number
5  
dc.journal.pagination
1251-1259  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Gianni, Stefano. Università degli studi di Roma "La Sapienza"; Italia  
dc.description.fil
Fil: Freiberger, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Jemth, Per. Uppsala Universitet; Suecia  
dc.description.fil
Fil: Ferreiro, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Wolynes, Peter G.. Rice University; Estados Unidos  
dc.description.fil
Fil: Fuxreiter, Monika. Università di Padova; Italia  
dc.journal.title
Accounts of Chemical Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.accounts.0c00813  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.accounts.0c00813